Skip to main content
Log in

Electroluminescence and Photoluminescence from a Fluorescent Cobalt Porphyrin Grafted on Graphene Oxide

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A new graphene oxide–cobalt porphyrin (GO–CoTPP) hybrid material has been used as an emissive layer in organic light-emitting diodes (OLEDs). Devices with fundamental structure of indium-doped tin oxide (ITO)/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS, 45 nm)/polyvinylcarbazole (PVK):2-(4-biphenyl)-5-(4-t-butylphenyl)-1,3,4-oxadiazole (PBD):GO–CoTPP (70 nm)/1,3,5-tris(N-phenylbenzimidazol-2-yl)-benzene (TPBI, 20 nm)/Al (150 nm) were fabricated. A red electroluminescence (EL) was obtained from thin-film PVK:PBD:CoTPP at 70 nm thickness. When CoTPP was covalently grafted on graphene oxide (GO) sheets, near-white EL was obtained. The white emission, which was composed of bluish green and red, is attributed to electroplex formation at the GO–CoTPP/PBD interface. Such electroplex emission between electrons and holes is a reason for the low turn-on voltage of the GO–CoTPP-based OLED. Maximum luminance efficiency of 1.43 cd/A with Commission International de l’Eclairage coordinates of 0.33 and 0.40 was achieved at current of 0.02 mA and voltage of 14 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Kuang, W. Perrie, D. Liu, P. Fitzsimons, S.P. Edwardson, E. Fearon, G. Dearden, and K.G. Watkins, Appl. Surf. Sci. 258, 7601 (2012).

    Article  Google Scholar 

  2. W. Ebina, A.C. Rowat, and D.A. Weitz, Biomicrofluidics 3, 034104 (2009).

    Article  Google Scholar 

  3. H. Shahroosvand, L. Najafi, E. Mohajerani, M. Janghouri, and M. Nasrollahzadeh, RSC Adv. 3, 6323 (2013).

    Article  Google Scholar 

  4. M. Anicete-Santos, M.S. Silvab, E. Orhanc, M.S. Goes, M.A. Zaghete, C.O. Paiva-Santos, P.S. Pizani, M. Cilense, J.A. Varelag, and E. Longo, J. Lumin. 127, 689 (2007).

    Article  Google Scholar 

  5. L. Huang, K. Tang, Q. Yang, G. Shen, and S. Jia, Mater. Res. Bull. 39, 1083 (2004).

    Article  Google Scholar 

  6. H. Shahroosvand, L. Najafi, A. Sousaraei, E. Mohajerani, M. Janghouri, and F. Bonaccorso, J. Phys. Chem. C 120, 24965 (2016).

    Article  Google Scholar 

  7. S.K. Behzad, E. Najafi, M.M. Amini, and S.W. Ng, Monatsh. Chem. 146, 571 (2015).

    Article  Google Scholar 

  8. J. Frischeisen, B.J. Scholz, B.J. Arndt, T.D. Schmidt, R. Gehlhaar, C. Adachi, and W. Brutting, J. Photonics Energy. 1, 011004 (2011).

    Article  Google Scholar 

  9. M.R. Jafari, M. Janghouri, and Z. Shahedi, J. Electron. Mater. 46, 544 (2017).

    Article  Google Scholar 

  10. H. Shahroosvand, P. Abbasi, A. Faghih, E. Mohajerani, M. Janghouri, and M. Mahmoudi, RSC Adv. 4, 1150 (2014).

    Article  Google Scholar 

  11. J.Z. Lin, W. Jian, G.R. Tie, Y.L. Chun, C.G. Dong, and C.G. Can, J. Phys. Org. Chem. 23, 190 (2010).

    Google Scholar 

  12. M. Janghouri, E. Mohajerani, A. Khabazi, Z. Abedi, and H. Razavi, J. Lumin. 140, 7 (2013).

    Article  Google Scholar 

  13. A. Ryan, B. Tuffy, S. Horn, W.J. Blau, and M.O. Senge, Tetrahedron 57, 8248 (2011).

    Article  Google Scholar 

  14. A.K. Geim and K.S. Novoselov, Nat. Mater. 6, 183 (2007).

    Article  Google Scholar 

  15. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science 306, 666 (2004).

    Article  Google Scholar 

  16. X. Wang, L. Zhi, and K. Mullen, Nano Lett. 8, 323 (2007).

    Article  Google Scholar 

  17. H.A. Becerill, J. Mao, Z. Liu, R.M. Stoltenberg, Z. Bao, and Y. Chen, ACS Nano 2, 463 (2008).

    Article  Google Scholar 

  18. G. Eda, G. Fanchini, and M. Chhowalla, Nat. Nanotechnol. 3, 270 (2008).

    Article  Google Scholar 

  19. J.T. Robinson, F.K. Perkins, E.S. Snow, Z. Wei, and P.E. Sheehan, Nano Lett. 8, 3137 (2008).

    Article  Google Scholar 

  20. J.T. Robinson, M. Zalalutdinov, J.W. Baldwin, E.S. Snow, Z. Wei, P. Sheehan, and B.H. Houston, Nano Lett. 8, 3441 (2008).

    Article  Google Scholar 

  21. G. Eda, Y.-Y. Lin, S. Miller, C.-W. Chen, W.-F. Su, and M. Chhowalla, Appl. Phys. Lett. 92, 233305 (2008).

    Article  Google Scholar 

  22. S. Park and R.S. Ruoff, Nat. Nanotechnol. 4, 217 (2009).

    Article  Google Scholar 

  23. C. Gomez-Navarro, T.R. Weitz, A.M. Bittner, M. Scolari, A. Mews, M. Burghard, and K. Kern, Nano Lett. 7, 3499 (2007).

    Article  Google Scholar 

  24. A.B. Kaiser, C. Gomez-Navarro, R.S. Sundaram, M. Burghard, and K. Kern, Nano Lett. 9, 1787 (2009).

    Article  Google Scholar 

  25. M. Khenfouch, J. Wéry, M. Baïtoul, and M. Maaza, J. Lumin. 145, 33 (2014).

    Article  Google Scholar 

  26. M.R. Jafari and B. Bahram, Appl. Phys. A 119, 1491 (2015).

    Article  Google Scholar 

  27. J. Zhu, Y. Li, Y. Chen, J. Wang, B. Zhang, J. Zhang, and W.J. Blau, Carbon 49, 1900 (2011).

    Article  Google Scholar 

  28. M.E. Ragoussi, J. Malig, G. Katsukis, B. Butz, E. Spiecker, G. Torre, T. Torres, and D.M. Guldi, Angew. Chem. Int. Ed. 51, 6421 (2012).

    Article  Google Scholar 

  29. H. Shahroosvand, S. Zakavi, A. Sousaraei, E. Mohajerani, and M. Mahmoudi, Dalton Trans. 44, 8364 (2015).

    Article  Google Scholar 

  30. J.R. Rani, J. Oh, J. Park, J. Lim, B. Park, K. Kim, S.J. Kim, and S.C. Jun, Nanoscale 12, 5620 (2013).

    Article  Google Scholar 

  31. C.A. Parker and W.T. Rees, Analyst 85, 587 (1960).

    Article  Google Scholar 

  32. D.J. Quimby and F.R. Longo, J. Am. Chem. Soc. 97, 5111 (1975).

    Article  Google Scholar 

  33. K. Singh, A. Kumar, R. Srivastava, P.S. Kadyan, and M.N. Kamalasanan, Opt. Mater. 34, 221 (2011).

    Article  Google Scholar 

  34. R.S. Ashraf, M. Shahid, E. Klemm, M. Al-Ibrahim, and S. Sensfuss, Macromol. Rapid Commun. 27, 1454 (2006).

    Article  Google Scholar 

  35. M. Janghouri, E. Mohajerani, M.M. Amini, and E. Najafi, J. Lumin. 154, 465 (2014).

    Article  Google Scholar 

  36. J. Kalinowski, M. Cocchi, P. Dimarco, W. Stampor, G. Giro, and V. Fattori, J. Phys. D: Appl. Phys. 33, 2379 (2000).

    Article  Google Scholar 

  37. T. Förster, Discuss. Faraday Soc. 27, 7 (1959).

    Article  Google Scholar 

  38. T. Virgili, D.G. Lidzey, and D.D.C. Bradley, Adv. Mater. Weinh. Ger. 12, 58 (2000).

    Article  Google Scholar 

  39. Y. Sakakibara, S. Okutsu, T. Enokida, and T. Tani, Appl. Phys. Lett. 74, 2587 (1999).

    Article  Google Scholar 

  40. Z. Liu, D. He, Y. Wang, H. Wu, and J. Wang, Synth. Met. 160, 1587 (2010).

    Article  Google Scholar 

  41. W. Chen, X.M. Tao, P. Xue, and X.Y. Cheng, Appl. Surf. Sci. 252, 1404 (2005).

    Article  Google Scholar 

  42. D.Y. Kim, J.K. Grey, and P.F. Barbara, Synth. Met. 156, 336 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank Shahid Beheshti University and Urmia University of Technology for supporting this work. The author also thanks Dr. H. Hosseini at the Department of Chemistry for preparing the GO–CoTPP material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Janghouri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janghouri, M. Electroluminescence and Photoluminescence from a Fluorescent Cobalt Porphyrin Grafted on Graphene Oxide. J. Electron. Mater. 46, 5635–5641 (2017). https://doi.org/10.1007/s11664-017-5627-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-017-5627-1

Keywords

Navigation