Skip to main content
Log in

Excellent cyclability of P2-type Na–Co–Mn–Si–O cathode material for high-rate sodium-ion batteries

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

P2-type Na2/3Co0.25Mn0.705Si0.045O2 (Si-NCM) high-rate cathode was designed by using silicon of the nonmetallic element as dopant and developed by the simple solid-state route for sodium-ion batteries. XRD refinements confirm the P2-type hexagonal structure with space group (SG: P63/mmc), in which Si4+ ions substitute the Mn site of P2-Na2/3Co0.25Mn0.75O2 (NCM) lattice without any impurity phases of Si-related substances. Si-NCM delivers the initial capacity of 144 mAh g−1 at 0.1 C with the capacity retention of 80.1% after 100 cycles, and the discharge capacity of 120 mAh g−1 at 1 C with 83.4% retention at 200th cycle. Particularly, excellent capacity retentions of 90.2% after 260 cycles and 85.8% after 500 cycles at 5 C have been achieved. Si-doping can expedite the superior cycle stability of Si-NCM compared to NCM, which is attributed to the more powerful Si–O, TM–O and O–O bonds, more stable occupancy rate in the Nae site of unit cell and particularly ascribed to the reversible two-phase transition of P2–P3–P2 in the process of Na+ extraction and intercalation. Hence, SiO2 as dopant is a novel strategy with regard to the development of high-rate cathode materials for SIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Hwang JY, Myung ST, Sun YK (2017) Sodium-ion batteries: present and future. Chem Soc Rev 46:3529–3614

    Article  CAS  Google Scholar 

  2. Li F, Zhou Z (2017) Micro/nanostructured materials for sodium ion batteries and capacitors. Small 14:1702961

    Article  Google Scholar 

  3. Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Research development on sodium-ion batteries. Chem Rev 114:11636–11682

    Article  CAS  Google Scholar 

  4. Zhao E, Chen M, Hu Z, Chen D, Yang L, Xiao X (2017) Improved cycle stability of high-capacity Ni-rich LiNi0.8Mn0.1Co0.1O2 at high cut-off voltage by Li2SiO3 coating. J Power Sour 343:345–353

    Article  CAS  Google Scholar 

  5. Ortiz-Vitoriano N, Drewett NE, Gonzalo E, Rojo T (2017) High performance manganese-based layered oxide cathodes: overcoming the challenges of sodium ion batteries. Energy Environ Sci 10:1051–1074

    Article  CAS  Google Scholar 

  6. Wang L, Sun YG, Hu LL et al (2017) Copper-substituted Na0.67Ni0.3−xCuxMn0.7O2 cathode materials for sodium-ion batteries with suppressed P2–O2 phase transition. J Mater Chem A 5:8752–8761

    Article  CAS  Google Scholar 

  7. Wu ZG, Li JT, Zhong YJ et al (2017) Mn-based cathode with synergetic layered-tunnel hybrid structures and their enhanced electrochemical performance in sodium ion batteries. ACS Appl Mater Interfaces 9:21267–21275

    Article  CAS  Google Scholar 

  8. Chagas LG, Buchholz D, Vaalma C et al (2014) P-type NaxNi0.22Co0.11Mn0.66O2 materials: linking synthesis with structure and electrochemical performance. J Mater Chem A 2:20263–20270

    Article  CAS  Google Scholar 

  9. Xiang X, Zhang K, Chen J (2015) Recent advances and prospects of cathode materials for sodium-ion batteries. J Cheminf 46:5343–5364

    Google Scholar 

  10. Delmas C, Fouassier C, Hagenmuller P (2007) Structural classification and properties of the layered oxides. Phys B 99:81–85

    Article  Google Scholar 

  11. Billaud J, Singh G, Armstrong AR et al (2014) Na0.67Mn1−xMgxO2 (0 ≤ x ≤ 0.2): a high capacity cathode for sodium-ion batteries. Energy Environ Sci 7:1387–1391

    Article  CAS  Google Scholar 

  12. Li Y, Yang Z, Xu S et al (2015) Air-stable copper-based P2-Na7/9Cu2/9Fe1/9Mn2/3O2 as a new positive electrode material for sodium-ion batteries. Adv Sci 2:15–31

    Google Scholar 

  13. Sathiya M, Thomas J, Batuk D, Pimenta V, Gopalan R, Tarascon JM (2017) Dual stabilization and sacrificial effect of Na2CO3 for increasing capacities of na-ion cells based on P2-NaxMO2 electrodes. Chem Mater 29:5948–5956

    Article  CAS  Google Scholar 

  14. Yong W, Hu G, Peng Z et al (2018) Influence of Li substitution on the structure and electrochemical performance of P2-type Na0.67Ni0.2Fe0.15Mn0.65O2 cathode materials for sodium ion batteries. J Power Sour 396:639–647

    Article  Google Scholar 

  15. Guo S, Sun Y, Liu P et al (2018) Cation-mixing stabilized layered oxide cathodes for sodium-ion batteries. Sci Bull 63:376–384

    Article  CAS  Google Scholar 

  16. Kumakura S, Tahara Y, Kubota K et al (2016) Sodium and manganese stoichiometry of P2-Type Na2/3MnO2. Angew Chem Int Edit 55:12760–12763

    Article  CAS  Google Scholar 

  17. Guo S, Liu P, Yu H et al (2015) A layered P2- and O3-type composite as a high-energy cathode for rechargeable sodium-ion batteries. Angew Chem 127:5992–5997

    Article  Google Scholar 

  18. Ma T, Xu GL, Zeng X et al (2017) Solid state synthesis of layered sodium manganese oxide for sodium-ion battery by in situ high energy X-ray diffraction and X-ray absorption near edge spectroscopy. J Power Sour 341:114–121

    Article  CAS  Google Scholar 

  19. Liu Y, Fang X, Zhang A, Shen C, Liu Q, Enaya H, Zhou C (2016) Layered P2-Na2/3[Ni1/3Mn2/3]O2 as high-voltage cathode for sodium-ion batteries: the capacity decay mechanism and Al2O3 surface modification. Nano Energy 27:27–34

    Article  CAS  Google Scholar 

  20. Nicolas B, Hartung S, Joseph BF et al (2016) P2-NaxCoyMn1–yO2 (y = 0, 0.1) as cathode materials in sodium-ion batteries-effects of doping and morphology to enhance cycling stability. Chem Mater 28:2041–2051

    Article  Google Scholar 

  21. Wang Q, Hu E, Pan Y et al (2017) Utilizing Co2+/Co3+ redox couple in P2-layered Na0.66Co0.22Mn0.44Ti0.34O2 cathode for sodium-ion batteries. Adv Sci 4:1700219–1700226

    Article  Google Scholar 

  22. Li ZY, Zhang J, Gao R, Zhang H, Hu Z, Liu X (2016) Unveiling the role of Co in improving the high-rate capability and cycling performance of layered Na0.7Mn0.7Ni0.3-xCoxO2 cathode materials for sodium-ion batteries. Adv Mater Interfaces 8:15439–15448

    Article  CAS  Google Scholar 

  23. Wang H, Li ZY, Yang W, Yang J, Chen D, Su C, Liu X (2018) Structure modulation and performance optimization of P2-Na0.7Mn0.75Fe0.25-x-yNixCoyO2 through a synergistic substitution of Ni and Co for Fe. Electrochim Acta 277:88–99

    Article  CAS  Google Scholar 

  24. Zhou D, Huang W, Zhao F (2018) P2-type Na0.67Fe0.3Mn0.3Co0.4O2 cathodes for high-performance sodium-ion batteries. Solid State Ion 322:18–23

    Article  CAS  Google Scholar 

  25. Hemalatha K, Jayakumar M, Prakash AS (2018) Influence of the manganese and cobalt content on the electrochemical performance of P2-Na0.67MnxCo1−xO2 cathodes for sodium-ion batteries. Dalton Trans 47:1223–1232

    Article  CAS  Google Scholar 

  26. Zhu YE, Qi X, Chen X, Hou X, Zhang X, Wei J, Hub Y, Zhou Z (2016) P2-Na0.67Co0.5Mn0.5O2 cathode materials with excellent rate capability and cycling stability for sodium ion batteries. J Mater Chem A 4:11103–11109

    Article  CAS  Google Scholar 

  27. Wang Y, Tang J, Yang X (2018) A study on electrochemical properties of P2-type Na-Mn-Co-Cr-O cathodes for sodium-ion batteries. Inorg Chem Front 5:577–584

    Article  CAS  Google Scholar 

  28. Tang J, Wang Y, Wang L, Zhao J, Li Y (2018) Excellent cycle stability of P2-Na0.67Co0.25Mn0.705V0.045O2@NaV6O15 composite cathode for sodium ion battery. Mater Chem Phys 18:0254–0584

    Google Scholar 

  29. Vaalma C, Buchholz D, Passerini S (2017) Beneficial effect of boron in layered sodium-ion cathode materials: the example of Na2/3B0.11Mn0.89O2. J Power Sour 364:33–40

    Article  CAS  Google Scholar 

  30. Nageswaras S, Keppeler M, Kim SJ, Srinivasan M (2017) Morphology controlled Si modified LiNi0.5Mn1.5O4 microspheres as high performance high voltage cathode materials in lithium ion batteries. J Power Sour 346:89–96

    Article  Google Scholar 

  31. Bini M, Boni P, Mustarelli P, Quinzeni I, Bruni G, Capsoni D (2018) Silicon-doped LiNi0.5Mn1.5O4 as a high-voltage cathode for Li-ion batteries. Solid State Ion 320:1–6

    Article  CAS  Google Scholar 

  32. Keppeler M, Nageswaran S, Kim SJ, Srinivasan M (2016) Silicon doping for high voltage spinel LiNi0.5Mn1.5O4 towards superior electrochemical performance of lithium ion batteries. Electrochim Acta 213:904–910

    Article  CAS  Google Scholar 

  33. Zhang S, Liu Y, Zhang N, Zhao K, Yang J, He S (2016) O3-type NaNi0.33Li0.11Ti0.56O2-based electrode for symmetric sodium ion cell. J Power Sour 329:1–7

    Article  CAS  Google Scholar 

  34. Xu H, Zong J, Liu X (2018) P2-type Na0.67Mn0.6Fe0.4-x-yZnxNiyO2 cathode material with high-capacity for sodium-ion battery. Ionics 24:1939–1946

    Article  CAS  Google Scholar 

  35. Lee DH, Xu J, Meng YS (2013) An advanced cathode for Na-ion batteries with high rate and excellent structural stability. Phys Chem Chem Phys 15:3304–3312

    Article  CAS  Google Scholar 

  36. Zhang X, Yu C, Huang X (2012) Novel composites Li[LixNi0.34–x Mn0.47Co0.19]O2 (0.18 ≤ x ≤ 0.21): synthesis and application as high-voltage cathode with improved electrochemical performance for lithium ion batteries. Electrochim Acta 81:233–238

    Article  CAS  Google Scholar 

  37. Liu S, Wu H, Huang L, Xiang M, Liu H, Zhang Y (2016) Synthesis of Li2Si2O5-coated LiNi0.6Co0.2Mn0.2O2 cathode materials with enhanced high-voltage electrochemical properties for lithium-ion batteries. J Alloy Compd 674:447–454

    Article  CAS  Google Scholar 

  38. Hu G, Zhang M, Wu L, Peng Z, Du K, Cao Y (2017) Effects of Li2SiO3 coating on the performance of LiNi0.5Co0.2Mn0.3O2 cathode material for lithium ion batteries. J Alloy Compd 690:589–597

    Article  CAS  Google Scholar 

  39. Wang Y, Zhao F, Qian Y, Ji H (2018) A high-performance P2-Na0.70Mn0.80Co0.15Zr0.05O2 cathode for sodium-ion batteries. ACS Appl Mater Interfaces 10:42380–42386

    Article  CAS  Google Scholar 

  40. Song X, Zhou X, Deng Y, Nan J, Shu D, Cai Z, Huang Y, Zhang X (2018) Synthesis of NaxMn0.54Ni0.13Fe0.13O2 with P2-type hexagonal phase as high-performance cathode materials for sodium-ion batteries. J Alloy Compd 732:88–94

    Article  CAS  Google Scholar 

  41. Wang K, Wu ZG, Zhang T et al (2016) P2-type Na0.67Mn0.72Ni0.14Co0.14O2 with K+ doping as new high rate performance cathode material for sodium-ion batteries. Electrochim Acta 216:51–57

    Article  CAS  Google Scholar 

  42. Bao S, Luo SH, Wang Z, Yana S, Wang Q, Lia J (2018) Novel P2-type concentration-gradient Na0.67Ni0.167Co0.167Mn0.67O2 modified by Mn-rich surface as cathode material for sodium ion batteries. J Power Sour 396:404–411

    Article  CAS  Google Scholar 

  43. Li ZY, Gao R, Sun L, Hu Z, Liu X (2015) Designing an advanced P2-Na0.67Mn0.65Ni0.2Co0.15O2 layered cathode material for Na-Ion batteries. J Mater Chem A 3:16272–16278

    Article  CAS  Google Scholar 

  44. Wang X, Tamaru M, Okubo M, Yamada A (2013) Electrode properties of P2-Na2/3MnyCo1−yO2 as cathode materials for sodium-ion batteries. J Phys Chem C 117:15545–15551

    Article  CAS  Google Scholar 

  45. Wang PF, You Y, Yin YX, Guo YG (2016) An O3-type NaNi0.5Mn0.5O2 cathode for sodium-ion batteries with improved rate performance and cycling stability. J Mater Chem A 4:17660–17664

    Article  CAS  Google Scholar 

  46. Chen X, Zhou X, Hu M, Liang J, Wu D, Wei J, Zhou Z (2015) Stable layered P3/P2 Na0.66Co0.5Mn0.5O2 cathode materials for sodium-ion batteries. J Mater Chem A 3:20708–20714

    Article  CAS  Google Scholar 

  47. Buchholz D, Chagas LG, Vaalma C, Wu L, Passerini S (2014) Water sensitivity of layered P2/P3-NaxNi0.22Co0.11Mn0.66O2 cathode material. J Mater Chem A 2:13415–13421

    Article  CAS  Google Scholar 

  48. Bao S, Luo SH, Wang ZY, Wang Q, Hao AM, Zhang YH, Wang YL (2017) The critical role of sodium content on structure, morphology and electrochemical performance of layered P2-type NaxNi0.167Co0.167Mn0.67O2 for sodium ion batteries. J Power Sour 362:323–331

    Article  CAS  Google Scholar 

  49. Caballero A, Hernán L, Morales J, Sánchez L, Santos Peña J, Aranda MAG (2002) Synthesis and characterization of high-temperature hexagonal P2-Na0.6MnO2 and its electrochemical behavior as cathode in sodium cells. J Mater Chem 12:1142–1147

    Article  CAS  Google Scholar 

  50. Luo C, Langrock A, Fan X, Liang Y, Wang C (2017) P2-type transition metal oxides for high performance Na-Ion battery cathodes. J Mater Chem A 5:18214–18220

    Article  CAS  Google Scholar 

  51. Pang WL, Zhang XH, Guo JZ et al (2017) P2-type Na2/3Mn1-xAlxO2 cathode material for sodium-ion batteries: Al-doped enhanced electrochemical properties and studies on the electrode kinetics. J Power Sour 356:80–88

    Article  CAS  Google Scholar 

  52. Gao G, Tie D, Ma H et al (2018) Interface-rich mixed P2 + T phase NaxCo0.1Mn0.9O2 (0.44 ≤ x ≤ 0.7) toward fast and high capacity sodium storage. J Mater Chem A 6:6675–6684

    Article  CAS  Google Scholar 

  53. Ramasamy HV, Kaliyappan K, Thangavel R et al (2017) Cu-doped P2-Na0.5Ni0.33Mn0.67O2 encapsulated with MgO as a novel high voltage cathode with enhanced Na-storage properties. J Mater Chem A 5:8408–8415

    Article  CAS  Google Scholar 

  54. Park SB, Shin HC, Lee WG, Cho WI, Jang H (2008) Improvement of capacity fading resistance of LiMn2O4 by amphoteric oxides. J Power Sour 180:597–601

    Article  CAS  Google Scholar 

  55. Wen Y, Wang B, Zeng G, Nogita K, Ye D, Wang L (2015) Electrochemical and structural study of layered P2-type Na2/3Ni1/3Mn2/3O2 as cathode material for sodium-ion battery. Chem Asian J 10:661–666

    Article  CAS  Google Scholar 

  56. Lv TJ, Guan L, Xiao P, Zhang DY, Chang CK (2019) Improved electrochemical performance of P2-type Na0.67Lix(Mn0.5Fe0.25Co0.25)1-xO2 cathode materials from Li ion substitution of the transition metal ions. J Mater Sci 54:5584–5594. https://doi.org/10.1007/s10853-018-03194-w

    Article  CAS  Google Scholar 

  57. Xu X, Ji S, Gao R, Liu J (2015) Facile synthesis of P2-type Na0.4Mn0.54Co0.46O2 as a high capacity cathode material for sodium-ion batteries. RSC Adv 5:51454–51460

    Article  CAS  Google Scholar 

  58. Rangasamy VS, Zhang L, Seo JW, Locquet JP, Thayumanasundaram S (2017) Enhanced electrochemical performance of Na2/3[Mn0.55Ni0.30Co0.15]O2 positive electrode in sodium-ion batteries by functionalized multi-walled carbon nanotubes. Electrochim Acta 237:29–36

    Article  CAS  Google Scholar 

  59. Xu GL, Amine R, Xu YF et al (2017) Insights into the structural effects of layered cathode materials for high voltage sodium-ion batteries. Energy Environ Sci 10:1677–1693

    Article  CAS  Google Scholar 

  60. Dai F, Chen F, Wang T, Feng S, Hu C, Wang X, Zheng Z (2016) Effects of dopamine-containing curing agents on the water resistance of epoxy adhesives. J Mater Sci 51:4320–4327. https://doi.org/10.1007/s10853-016-9743-8

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanzhi Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Wang, Y., Yang, X. et al. Excellent cyclability of P2-type Na–Co–Mn–Si–O cathode material for high-rate sodium-ion batteries. J Mater Sci 54, 12723–12736 (2019). https://doi.org/10.1007/s10853-019-03807-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03807-y

Navigation