Skip to main content
Log in

Preparation of oxygen-deficient 2D WO3−x nanoplates and their adsorption behaviors for organic pollutants: equilibrium and kinetics modeling

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A novel oxygen defect-rich WO3−x nanoplates were synthesized using a solvothermal method followed by an annealing treatment under Ar–H2 gas mixture atmosphere. WO3−x nanoplates possess large numbers of oxygen defects systematically demonstrated by the elemental analysis, X-ray diffraction, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy, respectively. The adsorption capacity of defect-rich 2D WO3−x nanoplates was evaluated by removal of methyl orange (MO) and the adsorption capacity could reach to 63.7 µg mg−1 with good stability and reusability after. Their adsorption performance at the temperature of 298 K, 308 K and 318 K is carried out and proved to fit Langmuir isotherm model very well, suggestive of a monolayer adsorption on the materials surface sites. In addition, adsorption kinetics studies show that the adsorption process conforms to the pseudo-second-order equation model very well demonstrating a chemical process for MO adsorption. Compared to pure WO3 with annealing treatment at N2 and air atmospheres, the one treated under Ar–H2 gas mixture atmosphere (WO3−x) shows higher adsorption capacity and fast adsorption kinetics toward MO, which was attributed to deprivation of lattice oxygen of WO3 at the reducing atmosphere. Meanwhile, the 2D defect-rich WO3−x nanoplates also exhibit excellent adsorption properties toward methylene blue and rhodamine B, and they can be made into thin film by vacuum suction filtration for dynamically removing the organic pollutants. Our study shows that the as-synthesized defect-rich 2D WO3−x nanoplates have potential applications in real-time wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Xiao FX, Liu B (2018) Plasmon-dictated photo-electrochemical water splitting for solar-to-chemical energy conversion: current status and future perspectives. Adv Mater Interfaces 5:1701098

    Article  Google Scholar 

  2. Zeng Z, Chen S, Tan TTY, Xiao FX (2018) Graphene quantum dots (GQDs) and its derivatives for multifarious photocatalysis and photoelectrocatalysis. Catal Today 315:171–183

    Article  CAS  Google Scholar 

  3. Zeng Z, Li YB, Chen S, Chen P, Xiao FX (2018) Insight into the charge transport correlation in Aux clusters and graphene quantum dots deposited on TiO2 nanotubes for photoelectrochemical oxygen evolution. J Mater Chem A 6:11154–11162

    Article  CAS  Google Scholar 

  4. Zeng Z, Xiao FX, Phan H et al (2018) Unraveling the cooperative synergy of zero-dimensional graphene quantum dots and metal nanocrystals enabled by layer-by-layer assembly. J Mater Chem A 6:1700–1713

    Article  CAS  Google Scholar 

  5. Zhang J, Xiao FX (2017) Modulation of interfacial charge transfer by self-assembly of single-layer graphene enwrapped one-dimensional semiconductors toward photoredox catalysis. J Mater Chem A 5:23681–23693

    Article  CAS  Google Scholar 

  6. Xiao FX, Liu B (2017) In situ etching-induced self-assembly of metal cluster decorated one-dimensional semiconductors for solar-powered water splitting: unraveling cooperative synergy by photoelectrochemical investigations. Nanoscale 9:17118–17132

    Article  CAS  Google Scholar 

  7. Xia KX, Chen ZG, Yi JJ, Xu H, Yu YH, She XJ, Mo Z, Chen HX, Xu YG, Li HM (2018) Highly efficient visible-light-driven schottky catalyst MoN/2D g-C3N4 for hydrogen production and organic pollutants degradation. Ind Eng Chem Res 57:8863–8870

    Article  CAS  Google Scholar 

  8. Yan J, Fan YM, Lian JB, Zhao Y, Xu YG, Gu JM, Song YH, Xu H, Li HM (2017) Kinetics and mechanism of enhanced photocatalytic activity employing ZnS nanospheres/graphene-like C3N4. J Mol Catal 438:103–112

    Article  CAS  Google Scholar 

  9. Huang ZH, Li YZ, Chen WJ, Shi JH, Zhang N, Wang XJ, Li Z, Gao LZ, Zhang YX (2017) Modified bentonite adsorption of organic pollutants of dye wastewater. Mater Chem Phys 202:266–276

    Article  CAS  Google Scholar 

  10. Lin S, Song ZL, Che GB, Ren A, Li P, Liu CB, Zhang JH (2014) Adsorption behavior of metal–organic frameworks for methylene blue from aqueous solution. Micropor Mesopor Mat 193:27–34

    Article  CAS  Google Scholar 

  11. Yan J, Chen ZG, Ji HY, Liu Z, Wang X, Xu YG, She XJ, Huang LY, Xu L, Xu H, Li HM (2016) Construction of a 2D graphene-like MoS2/C3N4 heterojunction with enhanced visible-light Ph. Chem Eur J 22:4764–4773

    Article  CAS  Google Scholar 

  12. Xia KX, Chen HX, Mao M, Chen ZG, Xu F, Yi JJ, Yu YH, She XJ, Xu H, Li HM (2018) Designing visible-light-driven Z-scheme catalyst 2D g-C3N4/Bi2MoO6: enhanced photodegradation activity of organic pollutants. Phys Status Solidi A 215:1800520

    Article  Google Scholar 

  13. Rathore BS, Pathania D (2014) Styrene–tin (IV) phosphate nanocomposite for photocatalytic degradation of organic dye in presence of visible light. J Alloy Compd 606:105–111

    Article  CAS  Google Scholar 

  14. Du XD, Wang CC, Liu JG, Zhao XD, Zhong J, Li YX, Li J, Wang P (2017) Extensive and selective adsorption of ZIF-67 towards organic dyes: performance and mechanism. J Colloid Interf Sci 506:437–441

    Article  CAS  Google Scholar 

  15. Wang X, Yan J, Ji HY, Chen ZG, Xu YG, Huang LY, Zhang Q, Song YH, Xu H, Li HM (2016) MO degradation by Ag–Ag2O/g-C3N4 composites under visible-light irradiation. SpringerPlus 5:369

    Article  Google Scholar 

  16. Xu H, Yan J, She XJ, Xu L, Xia JX, Xu YG, Song YH, Huang LY, Li HM (2014) Graphene-analogue carbon nitride: novel exfoliation synthesis and its application in photocatalysis and photoelectrochemical selective detection of trace amount of Cu2+. Nanoscale Res Lett 6:1406–1415

    Article  Google Scholar 

  17. Yan J, Gu JM, Wang X, Fan YM, Zhao Y, Lian JB, Xu YG, Song YH, Xu H, Li HM (2017) Design of 3D WO3/h-BN nanocomposites for efficient visible-light-driven photocatalysis. RSC Adv 7:25160–25170

    Article  CAS  Google Scholar 

  18. Zhang DQ, Li GS, Yu JC (2010) Inorganic materials for photocatalytic water disinfection. J Mater Chem 20:4529–4536

    Article  CAS  Google Scholar 

  19. Liu X, Gong W, Luo J, Zou C, Yang Y, Yang S (2016) Selective adsorption of cationic dyes from aqueous solution by polyoxometalate-based metal–organic framework composite. Appl Surf Sci 362:517–524

    Article  CAS  Google Scholar 

  20. Kanakarajua D, Kocklerb J, Mottic CA, Glassb BD, Oelgemöllera M (2015) Titanium dioxide/zeolite integrated photocatalytic adsorbents for the degradation of amoxicillin. Appl Catal B 166–167:45–55

    Article  Google Scholar 

  21. Mirbagheri NS, Sabbaghi S (2018) A natural kaolin/γ-Fe2O3 composite as an efficient nano-adsorbent for removal of phenol from aqueous solutions. Micropor Mesopor Mat 259:134–141

    Article  CAS  Google Scholar 

  22. Suraja PV, Yaakob Z, Binitha NN, Triwahyono S, Silija PP (2013) Co3O4 doped over SBA 15: excellent adsorbent materials. Clean Technol Environ Policy 15:967–975

    Article  CAS  Google Scholar 

  23. Suhas Gupta VK, Carrott PJM, Singh R, Chaudhary M, Kushwaha S (2016) Cellulose: a review as natural, modified and activated carbon adsorbent. Bioresour Technol 216:1066–1076

    Article  CAS  Google Scholar 

  24. Vahedi S, Tavakoli O, Khoobi M, Ansari A, Faramarzi MA (2017) Application of novel magnetic β-cyclodextrin-anhydride polymer nano-adsorbent in cationic dye removal from aqueous solution. J Taiwan Inst Chem E 80:452–463

    Article  CAS  Google Scholar 

  25. Lazzarini A (2017) Activated carbons for applications in catalysis: the point of view of a physical-chemist. Rend Fis Acc Lincei 28:29–42

    Article  Google Scholar 

  26. Gupta VK, Saravanan R, Agarwal S, Gracia F, Khan MM, Qin JQ, Mangalaraja RV (2017) Degradation of azo dyes under different wavelengths of UV light with chitosan-SnO2 nanocomposites. J Mol Liq 232:423–430

    Article  CAS  Google Scholar 

  27. Li ZJ, Sun YK, Xing J, Xing YC, Meng A (2018) One step synthesis of Co/Cr-codoped ZnO nanoparticle with superb adsorption properties for various anionic organic pollutants and its regeneration. J Hazard Mater 352:204–214

    Article  CAS  Google Scholar 

  28. Motlagh MM, Hassanzadeh-Tabrizi SA, Saffar-Teluri A (2015) Sol–gel synthesis of Mn2O3/Al2O3/SiO2 hybrid nanocomposite and application for removal of organic dye. J Sol-Gel Sci Tech 73:9–13

    Article  CAS  Google Scholar 

  29. Zhang JJ, Qi P, Li J, Zheng XC, Liu P, Guan XX, Zheng GP (2018) Three-dimensional Fe2O3–TiO2–graphene aerogel nanocomposites with enhanced adsorption and visible light-driven photocatalytic performance in the removal of RhB dyes. J Ind Eng Chem 61:407–415

    Article  CAS  Google Scholar 

  30. Omri A, Lambert SD, Geens J, Bennour F, Benzina M (2014) Synthesis, Surface characterization and photocatalytic activity of TiO2 supported on almond shell activated carbon. J Mater Sci Technol 30:894–902

    Article  CAS  Google Scholar 

  31. Nassar MY, Amin AS, Ahmed IS, Abdallah S (2016) Sphere-like Mn2O3 nanoparticles: Facile hydrothermal synthesis and adsorption properties. J Taiwan Inst Chem E 64:79–88

    Article  CAS  Google Scholar 

  32. Adhikari S, Mandal S, Sarkar D, Kim DH, Madras G (2017) Kinetics and mechanism of dye adsorption on WO3 nanoparticles. Appl Surf Sci 420:472–482

    Article  CAS  Google Scholar 

  33. Liu X, Jin AL, Jia YS, Xia TL, Deng CX, Zhu MH, Chen CF, Chen XS (2017) Synergy of adsorption and visible-light photocatalytic degradation of methylene blue by a bifunctional Z-scheme heterojunction of WO3/g-C3N4. Appl Surf Sci 405:359–371

    Article  CAS  Google Scholar 

  34. Yang LQ, Xu Q, Teng F, Yu DF, Yang Y, Gu WH, Teng YR, Xu JJ, Guo Y (2017) An initiative simple vacancy remedy method and the effect on photochemical properties. Appl Catal B-Environ 202:355–363

    Article  CAS  Google Scholar 

  35. Adhikari S, Sarkar D, Maiti HS (2014) Synthesis and characterization of WO3 spherical nanoparticles and nanorods. Mater Res Bull 49:325–330

    Article  CAS  Google Scholar 

  36. Yin L, Chen DL, Zhang HW, Shao G, Fan BB, Zhang R, Shao GS (2014) In situ formation of Au/SnO2 nanocrystals on WO3 nanoplates as excellent gas-sensing materials for H2S detection. Mater Chem Phys 148:1099–1107

    Article  CAS  Google Scholar 

  37. Zhu XW, Yang JM, She XJ et al (2019) Rapid synthesis of ultrathin 2D materials through liquid-nitrogen and microwave treatments. J Mater Chem A 7:5209–5213

    Article  CAS  Google Scholar 

  38. Zhu XW, Ji HY, Yi JJ et al (2018) A specifically exposed cobalt oxide/carbon nitride 2D heterostructure for carbon dioxide photoreduction. Ind Eng Chem Res 57:17394–17400

    Article  CAS  Google Scholar 

  39. Ahmeda B, Ojhaa AK, Singha A, Hirschb F, Fischerb I, Patricec D, Maternyca A (2018) Well-controlled in situ growth of 2D WO3 rectangular sheets on reduced graphene oxide with strong photocatalytic and antibacterial properties. J Hazard Mater 347:266–278

    Article  Google Scholar 

  40. Wang ZB, Wang D, Sun JB (2017) Controlled synthesis of defect-rich ultrathin two-dimensional WO3 nanosheets for NO2 gas detection. Sensor Actuat B 245:828–834

    Article  CAS  Google Scholar 

  41. Arun N, Maley J, Chen N, Sammynaiken R, Hu Y, Dalai AK (2017) NiMo nitride supported on γ-Al2O3 for hydrodeoxygenation of oleic acid: Novel characterization and activity study. Catal Today 291:153–159

    Article  CAS  Google Scholar 

  42. Albanese E, Valentin CD, Pacchioni G (2017) H2O Adsorption on WO3 and WO3−x (001) Surfaces. ACS Appl Mater Interfaces 9:23212–23221

    Article  CAS  Google Scholar 

  43. Liu L, Lin MH, Liu ZB, Sun HG, Zhao X (2017) density functional theory study of CO2 and H2O adsorption on a monoclinic WO3(001) surface. Chem Res Chin Univ 33(2):255–260

    Article  CAS  Google Scholar 

  44. Ren XY, Zhang S, Li C, Li SF, Jia Y, Cho JH (2015) Catalytic activities of noble metal atoms on WO3 (001): nitric oxide adsorption. Nanoscale Res Lett 10(1):60

    Article  Google Scholar 

  45. Ge QF, Gutowski M (2015) A comparative study of methanol adsorption and dissociation over WO3(001) and ReO3(001). Top Catal 58:655–664

    Article  CAS  Google Scholar 

  46. Daniel MF, Desbat B, Lassegues JC, Gerand B, Figlarz M (1987) Infrared and Raman study of WO3 tungsten trioxides and WO3, xH2O tungsten trioxide tydrates. J Solid State Chem 67:235–247

    Article  CAS  Google Scholar 

  47. Chatten R, Chadwick AV, Rougier A, Lindan JD (2005) The oxygen vacancy in crystal phases of WO3. J Phys Chem B 109:3146–3156

    Article  CAS  Google Scholar 

  48. Liu J, Xu H, Li H, Song Y, Wu J, Gong Y, Xu L, Yuan S, Li H, Ajayan PM (2019) In-situ formation of hierarchical 1D-3D hybridized carbon nanostructure supported nonnoble transition metals for efficient electrocatalysis of oxygen reaction. Appl Catal B-Environ 243:151–160

    Article  CAS  Google Scholar 

  49. Xun S, Jiang W, Guo T, He M, Ma R, Zhang M, Zhu W, Li H (2019) Magnetic mesoporous nanospheres supported phosphomolybdate-based ionic liquid for aerobic oxidative desulfurization of fuel. J Colloid Interface Sci 534:239–247

    Article  CAS  Google Scholar 

  50. Xun S, Zhu W, Chang Y, Li H, Zhang M, Jiang W, Zheng D, Qin Y, Li H (2016) Synthesis of supported SiW12O40-based ionic liquid catalyst induced solvent-free oxidative deep-desulfurization of fuels. Chem Eng J 288:608–617

    Article  CAS  Google Scholar 

  51. Huang L, Xu H, Li Y, Li H, Cheng X, Xia J, Xu Y, Cai G (2013) Visible-light-induced WO3/g-C3N4 composites with enhanced photocatalytic activity. Dalton Trans 42:8606–8616

    Article  CAS  Google Scholar 

  52. Wang F, Li C, Yu JC (2012) Hexagonal tungsten trioxide nanorods as a rapid adsorbent for methylene blue. Sep Purif Technol 91:103–107

    Article  CAS  Google Scholar 

  53. Li H, Shang J, Ai Z, Zhang L (2015) Efficient visible light nitrogen fixation with BiOBr nanosheets of oxygen vacancies on the exposed 001 facets. J Am Chem Soc 137:6393–6399

    Article  CAS  Google Scholar 

  54. Wendt S, Sprunger PT, Lira E, Madsen GK, Li Z, Hansen JO, Matthiesen J, Blekinge-Rasmussen A, Laegsgaard E, Hammer B, Besenbacher F (2008) The role of interstitial sites in the Ti3d defect state in the band gap of titania. Science 320:1755–1759

    Article  CAS  Google Scholar 

  55. Zhang N, Li X, Ye H, Chen S, Ju H, Liu D, Lin Y, Ye W, Wang C, Xu Q, Zhu J, Song L, Jiang J, Xiong Y (2016) Oxide defect engineering enables to couple solar energy into oxygen activation. J Am Chem Soc 138:8928–8935

    Article  CAS  Google Scholar 

  56. Wang YT, Cai JM, Wu MQ, Chen JH, Zhao WY, Tian Y, Ding T, Zhang J, Jiang Z, Li XG (2018) Rational construction of oxygen vacancies onto tungsten trioxide to improve visible light photocatalytic water oxidation reaction. Appl Catal B-Environ 239:398–407

    Article  CAS  Google Scholar 

  57. Wang Z, Yang C, Lin T, Yin H, Chen P, Wan D, Xu F, Huang F, Lin J, Xie X, Jiang M (2013) H-Doped black titania with very high solar absorption and excellent photocatalysis enhanced by localized surface plasmon resonance. Adv Funct Mater 23:5444–5450

    Article  CAS  Google Scholar 

  58. Li Y, Tang Z, Zhang J, Zhang Z (2016) Defect engineering of air-treated WO3 and its enhanced visible-light-driven photocatalytic and electrochemical performance. J Phys Chem C 120:9750–9763

    Article  CAS  Google Scholar 

  59. Chua Y, Stair P, Wachs I (2001) A comparison of ultraviolet and visible Raman spectra of supported metal oxide catalysts. J Phys Chem B 105:8600–8606

    Article  CAS  Google Scholar 

  60. Shao D, Yu M, Lian J, Sawyer S (2013) An ultraviolet photodetector fabricated from WO3 nanodiscs/reduced graphene oxide composite material. Nanotechnology 24:295701

    Article  Google Scholar 

  61. Liu G, Han J, Zhou X, Huang L, Zhang F, Wang X, Ding C, Zheng X, Han H, Li C (2013) Enhancement of visible-light-driven O2 evolution from water oxidation on WO3 treated with hydrogen. J Catal 307:148–152

    Article  CAS  Google Scholar 

  62. Liu Q, Wang FJ, Lin HX, Xie YY, Tong N, Lin JJ, Zhang XY, Zhang ZZ, Wang XX (2018) Surface oxygen vacancy and defect engineering of WO3 for improved visible light photocatalytic performance. Catal Sci Technol 8:4399–4406

    Article  CAS  Google Scholar 

  63. Naldoni A, Allieta M, Santangelo S, Marelli M, Fabbri F, Cappelli S, Bianchi C, Psaro R, Santo VD (2012) Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. J Am Chem Soc 134:7600–7603

    Article  CAS  Google Scholar 

  64. Rahbar N, Yazdanpanah H, Ramezani Z, Shushizadeh MR, Enayat M, Mansourzadeh M (2018) Comparative and competitive adsorption of Cu(II), Cd(II) and Pb(II) onto Sepia pharaonis endoskeleton biomass from aqueous solutions. Water Environ J 32:209–216

    Article  CAS  Google Scholar 

  65. Zhang W, Zhang Y, Gutha Y, Xu J (2017) Adsorption of Pb(II) ions from aqueous environment using eco-friendly chitosan schiff’s base@Fe3O4 (CSB@Fe3O4) as an adsorbent; kinetics, isotherm and thermodynamic studies. Int J Biol Macromol 105:422–430

    Article  CAS  Google Scholar 

  66. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465

    Article  CAS  Google Scholar 

  67. Chowdhury S, Mishra R, Saha P (2011) Adsorption thermodynamics, kinetics and isosteric heat of adsorption of malachite green onto chemically modified rice husk. Desalination 265:159–168

    Article  CAS  Google Scholar 

  68. Ofomaja AE (2007) Sorption dynamics and isotherm studies of methylene blue uptake on to palm kernel fibre. Chem Eng J 126:35–43

    Article  CAS  Google Scholar 

  69. Langmuir I (1916) The constitution and fundamental properties of solids and liquids. J Am Chem Soc 38:2221–2295

    Article  CAS  Google Scholar 

  70. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  71. Hameed BH (2009) Spent tea leaves: a new non-conventional and low-cost adsorbent for removal of basic dye from aqueous solutions. J Hazard Mater 161:753–759

    Article  CAS  Google Scholar 

  72. Afkhami A, Madrakian T, Amini A (2009) Mo (VI) and W(VI) removal from water samples by acid-treated high area carbon cloth. Desalination 243:258–264

    Article  CAS  Google Scholar 

  73. Li KQ, Wang XH (2009) Adsorptive removal of Pb(II) by activated carbon prepared from Spartina alterniflora: equilibrium, kinetics and thermodynamics. Bioresour Technol 100:2810–2815

    Article  CAS  Google Scholar 

  74. Kara M, Yuzer H, Sabah E, Celik MS (2003) Adsorption of cobalt from aqueous solutions onto sepiolite. Water Res 37:224–232

    Article  CAS  Google Scholar 

  75. Liu J, Ge X, Ye X et al (2016) 3D graphene/δ-MnO2 aerogels for highly efficient and reversible removal of heavy metal ions. J Mater Chem A 4:1970–1979

    Article  CAS  Google Scholar 

  76. Chen D, Shen W, Wu S, Chen C, Luo X, Guo L (2016) Ion exchange induced removal of Pb(ii) by MOF-derived magnetic inorganic sorbents. Nanoscale 8:7172–7179

    Article  CAS  Google Scholar 

  77. Liu X, Xu J, Ni Z, Wang R, You J, Guo R (2019) Adsorption and visible-light-driven photocatalytic properties of Ag3PO4/WO3 composites: a discussion of the mechanism. Chem Eng J 356:22–33

    Article  CAS  Google Scholar 

  78. Liu XW, Wang RC, Ni ZY, Zhou WL, Du YC, Ye ZQ, Guo R (2018) Facile synthesis and selective adsorption properties of Sm2CuO4 for malachite green: kinetics, thermodynamics and DFT studies. J Alloy Compd 743:17–25

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Research described in this paper was supported by the National Natural Science Foundation of China (21476098 and 21777063) and High-tech Research Key laboratory of Zhenjiang (SS2018002). JY acknowledges the China Postdoctoral Science Foundation (2017M621654) and Natural Science Foundation of Jiangsu Province (BK20180887) and ZS thanks for the Jiangsu Planned Projects for Postdoctoral Research Funds (2018K007C). We thank the Analytical and Testing Center of Jiangsu University for the characterization support.

Author information

Authors and Affiliations

Authors

Contributions

WP and ZS contributed equally to this work. JY and ZS designed and directed this study and analyzed the data. ZS, JY and WP contributed to all the experimental work. HX, HJ, SY and HL contributed to the helpful discussion.

Corresponding authors

Correspondence to Jia Yan or Huaming Li.

Ethics declarations

Conflict of interest

All authors have given approval to the final version of the manuscript and declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pu, W., Song, Z., Yan, J. et al. Preparation of oxygen-deficient 2D WO3−x nanoplates and their adsorption behaviors for organic pollutants: equilibrium and kinetics modeling. J Mater Sci 54, 12463–12475 (2019). https://doi.org/10.1007/s10853-019-03780-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03780-6

Navigation