Skip to main content
Log in

Density functional theory study of CO2 and H2O adsorption on a monoclinic WO3(001) surface

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Understanding the interaction of WO3 with CO2 and H2O is vital for clarifying its role in the photocatalytic reduction of CO2. In this study, we employed density functional theory to investigate the interaction of CO2 and H2O with both perfect and defective monoclinic WO3(001) surfaces. The interactions of co-adsorbed CO2 and H2O were also studied. The major finding is that the presence of oxygen vacancies and co-adsorbed CO2 or H2O can significantly increase the stability of CO2 and H2O on the WO3(001) surface. A defective WO3(001) surface is more capable of adsorbing a single CO2 or H2O molecule than a perfect WO3(001) surface, and H2O adsorbed onto a defective WO3(001) surface spontaneously dissociates into a hydrogen atom and a hydroxy group. The presence of co-adsorbed H2O can increase the stability of CO2 on the WO3(001) surface, while the presence of the co-adsorbed CO2 can increase the stability of H2O on WO3(001) surface. The analysis of the bonding mechanisms shows that the charge redistribution between the adsorbate and the WO3(001) surface containing oxygen vacancies and co-adsorbed CO2 or H2O is stronger than that between the adsorbate and the perfect WO3(001) surface; thus, adsorption energy is higher in the former case. The results will be useful for designing WO3 photocatalysts, as well as for an atomistic-level understanding of the photocatalytic reduction of CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cox P. M., Betts R. A., Jones C. D., Spall S. A., Nature, 2000, 408(6809), 184

    Article  CAS  Google Scholar 

  2. Houghton J., Rep. Prog. Phys., 2005, 68(6), 1343

    Article  Google Scholar 

  3. Karl T. R., Trenberth K. E., Science, 2003, 302(5651), 1719

    Article  CAS  Google Scholar 

  4. Tahir M., Amin N. S., Energ. Convers. Manage., 2013, 76, 194

    Article  CAS  Google Scholar 

  5. Navalon S. Dhakshinamoorthy A., Alvaro M., Garcia H., Chemsus-chem, 2013, 6(4), 562

    Article  CAS  Google Scholar 

  6. Habisreutinger S. N., Schmidt-Mende L., Stolarczyk J. K., Angew. Chem. Int. Edit., 2013, 52(29), 7372

    Article  CAS  Google Scholar 

  7. Zheng Y., Pan Z., Wang X., Chin. J. Catal., 2013, 34(3), 524

    Article  Google Scholar 

  8. Hong J., Zhang W., Ren J., Xu R., Anal. Methods, 2013, 5(5), 1086

    Article  CAS  Google Scholar 

  9. Mao J., Li K., Peng T., Catal. Sci. Technol., 2013, 3(10), 2481

    Article  CAS  Google Scholar 

  10. Kukkola J., Maklin J., Halonen N., Kyllonen T., Toth G., Szabo M., Shchukarev A., Mikkola J. P., Jantunen H., Kordas K., Sensor Actuat. B: Chem., 2011, 153(2), 293

    Article  CAS  Google Scholar 

  11. Vemuri R. S., Bharathi K. K., Gullapalli S. K., Ramana C. V., ACS Appl. Mater. Inter., 2010, 2(9), 2623

    Article  CAS  Google Scholar 

  12. Vemuri R. S., Engelhard M. H., Ramana C. V., ACS Appl. Mater. In-ter., 2012, 4(3), 1371

    Article  CAS  Google Scholar 

  13. Amano F., Ishinaga E., Yamakata A., J. Phys. Chem. C, 2013, 117(44), 22584

    Article  CAS  Google Scholar 

  14. Chen X., Zhou Y., Liu Q., Li Z., Liu J., Zou Z., ACS Appl. Mater. In-ter., 2012, 4(7), 3372

    Article  CAS  Google Scholar 

  15. Xie Y. P., Liu G., Yin L., Cheng H. M., J. Mater. Chem., 2012, 22(14), 6746

    Article  CAS  Google Scholar 

  16. Campbell C. T., Peden C. H. F., Science, 2005, 309(5735), 713

    Article  CAS  Google Scholar 

  17. Lee J., Sorescu D. C., Deng X., J. Am. Chem. Soc., 2011, 133(26), 10066

    Article  CAS  Google Scholar 

  18. Indrakanti V. P., Kubicki J. D., Schobert H. H., Fuel Process. Tech-nol., 2011, 92(4), 805

    Article  CAS  Google Scholar 

  19. He H., Zapol P., Curtiss L. A., J. Phys. Chem. C, 2010, 114(49), 21474

    Article  CAS  Google Scholar 

  20. Pipornpong W., Wanbayor R., Ruangpornvisuti V., Appl. Surf. Sci., 2011, 257(24), 10322

    Article  CAS  Google Scholar 

  21. Oliver P. M., Parker S. C., Egdell R. G. Jones F. H., J. Chem. Soc., Faraday Trans., 1996, 92, 2049

    Article  CAS  Google Scholar 

  22. Lambert-Mauriat C., Oison V., Saadi L., Aguir K., Surf. Sci., 2012, 606, 40

    Article  CAS  Google Scholar 

  23. Jones F. H., Rawlings K., Foord J. S., Cox P. A., Egdell R. G., Pethi-ca J. B., Wanklyn B. M. R., Phys. Rev. B, 1995, 52, R14392

    Article  CAS  Google Scholar 

  24. Gholizadeh R., Yu Y. X., Appl. Surf. Sci., 2015, 357, 1187

    Article  CAS  Google Scholar 

  25. Wu D. L., Jiang W., Liu X. Q., Qiu N. X., Xue Y., Chem. Res. Chi-nese Universities, 2016, 32(1), 118

    Article  CAS  Google Scholar 

  26. Zhang H., Zhang H. M., Wang L. J., Shen J. Y., Chem. J. Chinese Universities, 2016, 37(9), 1660

    CAS  Google Scholar 

  27. Payne M. C., Teter M. P., Allan D. C., Arias T. A., Joannopoulos J. D., Rev. Mod. Phys., 1992, 64, 1045

    Article  CAS  Google Scholar 

  28. Ceperley D. M., Alder B., J. Phys. Rev. Lett., 1980, 45(7), 566

    Article  CAS  Google Scholar 

  29. Perdew J. P., Zunger A., Phys. Rev. B, 1981, 23, 5048

    Article  CAS  Google Scholar 

  30. Segall M., Lindan P., Probert M., Pickard C., Hasnip P., Clark S., Payne M., J. Phys. Condens. Matter., 2002, 14, 2717

    Article  CAS  Google Scholar 

  31. Vanderbilt D., Phys. Rev. B, 1990, 41, 7892

    Article  CAS  Google Scholar 

  32. Monkhorst H. J., Pack J. D., Phys. Rev. B, 1976, 13(12), 5188

    Article  Google Scholar 

  33. Hahn K. R., Iannuzzi M., Seitsonen A. P., Hutter, J., J. Phys. Chem. C, 2013, 117(4), 1701

    Article  CAS  Google Scholar 

  34. Zhao Z., Li Z., Zou Z., J. Phys. Chem. C, 2012, 116(13), 7430

    Article  CAS  Google Scholar 

  35. Loopstra B. O., Rietveld H. M., Acta Cryst., 1969, B25, 1420

    Article  Google Scholar 

  36. Levy M., Pagnier T., Sensor. Actuat. B, 2007, 126, 204

    Article  CAS  Google Scholar 

  37. Sun X. L., Huo R. P., Bu Y. X., Li J. L., Chem. J. Chinese Universi-ties, 2015, 36(8), 1570

    CAS  Google Scholar 

  38. Yu Y. X., ACS Appl. Mater. Inter., 2014, 6, 16267

    Article  CAS  Google Scholar 

  39. Yu Y. X., J. Mater. Chem. A, 2014, 2, 8910

    Article  CAS  Google Scholar 

  40. Gao H. W., Pishney S., Janik M. J., Surf. Sci., 2013, 609, 140

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Liu.

Additional information

Supported by the National Natural Science Foundation of China(No.11447151) and the Natural Science Foundation of Shandong Province, China(No.ZR2014BP008).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Lin, M., Liu, Z. et al. Density functional theory study of CO2 and H2O adsorption on a monoclinic WO3(001) surface. Chem. Res. Chin. Univ. 33, 255–260 (2017). https://doi.org/10.1007/s40242-017-6378-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-017-6378-5

Keywords

Navigation