Skip to main content
Log in

Growth and magnetic interaction of single crystalline Ni gradient–diameter magnetic nanowire arrays

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Single crystalline Ni gradient–diameter magnetic nanowire arrays (GDMNWs) with different D/d (the diameter of thick end (D) and thin end (d) of GDMNWs) were successfully prepared by constant potential electrodeposition into a tapered anodic aluminum oxide template. The TEM images of samples illustrated that the obvious gradient–diameter nanowires had been obtained. The HRTEM, SAED images and XRD pattern demonstrated that the nanowire arrays grew with Ni single crystal structures. The magnetic interaction of GDMNWs was investigated by first-order reversal curves (FORCs) and δM(H) plots. The FORCs diagrams and δM(H) plots of different D/d ratio were compared and indicated that the magnetic interaction of GDMNWs with a thin end was dominated by dipolar interaction, and the thick end was dominated by exchange interaction. There was a gradient overlap effect in dipolar interaction and exchange interaction between the thin end and thick end. The spatial distributions of such unique magnetic interaction of GDMNWs were likely to produce entirely new physical characteristics of memory effect and tunable ferromagnetic resonance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Kwak M, Han L, Chen JJ, Fan R (2015) Interfacing inorganic nanowire arrays and living cells for cellular function analysis. Small 11:5600–5610

    Article  Google Scholar 

  2. Garcia JM, Asenjo A, Velazquez J, Garcia D, Vazquez M, Aranda P, RuizHitzky E (1999) Magnetic behavior of an array of cobalt nanowires. J Appl Phys 8:5480–5482

    Article  Google Scholar 

  3. Huber CA, Huber TE, Sadoqi M, Lubin JA, Manalis S, Prater CB (1994) Nanowire array composites. Science 263:800–802

    Article  Google Scholar 

  4. Singh R (2013) Unexpected magnetism in nanomaterials. J Magn Magn Mater 346:58–73

    Article  Google Scholar 

  5. Hrkac G, Dean J, Allwood DA (2011) Nanowire spintronics for storage class memories and logic. Phys Eng Sci 369:3214–3228

    Article  Google Scholar 

  6. Xu C, Li Z, Yang C, Zou P, Bi Xie, Lin Z, Zhang Z, Li B, Kang F, Wong CP (2016) An ultralong, highly oriented nickel-nanowire-array electrode scaffold for high-performance compressible pseudocapacitors. Adv Mater 28:5769–5777

    Google Scholar 

  7. Carignan LP, Yelon A, Ménard D, Caloz C (2011) Ferromagnetic nanowire metamaterials: theory and applications. IEEE T Microw Theory 59:2568–2585

    Article  Google Scholar 

  8. Zhang WX, Yang SH (2009) In situ fabrication of inorganic nanowire arrays grown from and aligned on metal substrates. Acc Chem Res 42:1617–1627

    Article  Google Scholar 

  9. Martin CR (1996) Membrane-based synthesis of nanomaterials. Chem Mater 8:1739–1746

    Article  Google Scholar 

  10. Parkin SP, Hayashi M, Thomas L (2008) Magnetic domain-wall racetrack memory. Science 320:190–194

    Article  Google Scholar 

  11. Wang J, Zuo Z, Huang L, Warsib MA, Xiao JQ, Hu J (2018) Novel gradient-diameter magnetic nanowire arrays with unconventional magnetic anisotropy behaviors. Chem Commun 54:7515–7519

    Article  Google Scholar 

  12. Proenca MP, Sousa CT, Ventura J, Garcia J, Vazquez M, Araujo JP (2017) Identifying weakly-interacting single domain states in Ni nanowire arrays by FORC. J Alloys Compd 699:421–429

    Article  Google Scholar 

  13. Diao Z, Decorde N, Stamenov P, Rode K, Feng G, Coey JMD (2012) Magnetization processes in micron-scale (CoFe/Pt)n multilayers with perpendicular anisotropy: first-order reversal curves measured by extraordinary Hall effect. J Appl Phys 111:07B538

    Article  Google Scholar 

  14. Pan M, Li Z, Wu Q, Ge H, Xu H (2019) Study of the role of Ti doping on magnetic properties of some nanocomposite alloys of α-Fe/Nd2Fe14B type. J Magn Magn Mater 471:457–463

    Article  Google Scholar 

  15. Lyubina J, Müller KH, Wolf M, Hannemann U (2010) A two-particle exchange interaction model. J Magn Magn Mater 322:2948–2955

    Article  Google Scholar 

  16. Pan H, Liu B, Yi J, Poh C, Lim S, Ding J, Feng Y, Huan CHA, Lin J (2005) Growth of single-crystalline Ni and Co nanowires via electrochemical deposition and their magnetic properties. J Phys Chem B 109:3094–3098

    Article  Google Scholar 

  17. Hertel R, Kirschner J (2004) Magnetization reversal dynamics in nickel nanowires. Phys B 343:206–210

    Article  Google Scholar 

  18. Dobrot CI, Stancu A (2013) What does a first-order reversal curve diagram really mean? A study case: Array of ferromagnetic nanowires. J Appl Phys 113:043928

    Article  Google Scholar 

  19. Mayergoyz I (1986) Mathematical models of hysteresis. IEEE Trans Magn 22:603–608

    Article  Google Scholar 

  20. Muxworthy AR, King JG, Heslop D (2005) Assessing the ability of first-order reversal curve (FORC) diagrams to unravel complex magnetic signals. J Geophys Res 110:B01105

    Article  Google Scholar 

  21. Gilbert DA, Zimanyi GT, Dumas RK, Winklhofer M, Gomez A, Eibagi N, Vicent JL, Liu K (2014) Quantitative decoding of interactions in tunable nanomagnet arrays using first order reversal curves. Sci Rep 4:4204

    Article  Google Scholar 

  22. Dobrota CI, Stancu A (2015) Tracking the individual magnetic wires’ switchings in ferromagnetic nanowire arrays using the first-order reversal curves (FORC) diagram method. Phys B Condens Matter 457:280–286

    Article  Google Scholar 

  23. Maurer T, Zighem F, Fang W, Ott F, Chaboussant G, Soumare Y, Atmane KA, Piquemal JY, Viau G (2011) Dipolar interactions in magnetic nanowire aggregates. J Appl Phys 110:123924

    Article  Google Scholar 

  24. Elbaile L, Crespo RD, Vega V, Garcia JA (2012) Magnetostatic interaction in Fe–Co nanowires. J Nanomater 1:198453

    Google Scholar 

  25. Pardavi-Horvath M, Si PE, Vazquez M, Rosa WO, Badini G (2008) Interaction effects in Permalloy nanowires systems. J Appl Phys 103:07D517

    Article  Google Scholar 

  26. Kou XM, Fan X, Zhu H, Xiao JQ (2009) Tunable ferromagnetic resonance in NiFe nanowires with strong magnetostatic interaction. Appl Phys Lett 94:112509

    Article  Google Scholar 

  27. Kou XM, Fan X, Dumas RK, Lu Q, Zhang YP, Zhu H, Zhang XK, Liu K, Xiao JQ (2011) Memory effect in magnetic nanowire arrays. Adv Mater 23:1393–1397

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51672248 and 51872261), Zhejiang Natural Science Foundation Outstanding Youth Science Foundation (LR19E020002) and Public Project of Zhejiang Province (2017C37067).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingcai Xu or Jun Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Wang, J., Hong, B. et al. Growth and magnetic interaction of single crystalline Ni gradient–diameter magnetic nanowire arrays. J Mater Sci 54, 11538–11545 (2019). https://doi.org/10.1007/s10853-019-03694-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-019-03694-3

Navigation