Skip to main content
Log in

Porous CoP/C@MCNTs hybrid composite derived from metal–organic frameworks for high-performance lithium-ion batteries

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Transitional metal phosphides (TMPs) have been attracted much attention as potential anode materials for lithium-ion batteries, due to their high theoretical capacity, good thermal stability and low cost. In this work, a rational design of multiwalled carbon nanotubes (MCNTs) modified porous CoP/carbon composite (CoP/C@MCNTs) has been realized using metal–organic framework as templates. The CoP/C@MCNTs hybrids with small CoP nanoparticles embed into the three-dimensional carbon skeleton are well incorporated with MCNTs. Owing to their unique architecture, the as-prepared CoP/C@MCNTs composite exhibits promising lithium storage performance with a reversible capacity of 547.5 mAh g−1 at a current density of 500 mA g−1 after 200 cycles and a discharge capacity of 290.2 mAh g−1 can still be maintained at a high current density of 3000 mA g−1. We believe that the interesting strategy for synthetic method in this work can open up a way to design other TMPs-based anode materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22:587–603

    Article  CAS  Google Scholar 

  2. Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652–657

    Article  CAS  Google Scholar 

  3. Liu C, Li F, Ma LP, Cheng HM (2010) Advanced materials for energy storage. Adv Mater 22:E28–E62

    Article  CAS  Google Scholar 

  4. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828

    Article  CAS  Google Scholar 

  5. Arico AS, Bruce P, Scrosati B, Tarascon JM, Schalkwijk WV (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377

    Article  CAS  Google Scholar 

  6. Zhang W (2011) A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J Power Sources 196:13–24

    Article  CAS  Google Scholar 

  7. Ji L, Lin Z, Alcoutlabi M, Zhang X (2011) Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ Sci 4:2682–2699

    Article  CAS  Google Scholar 

  8. Cheng F, Liang J, Tao Z, Chen J (2011) Functional materials for rechargeable batteries. Adv Mater 23:1695–1715

    Article  CAS  Google Scholar 

  9. Hall JW, Membreno N, Wu J, Celio H, Jones RA, Stevenson KJ (2012) Low- temperature synthesis of amorphous FeP2 and its use as anodes for Li ion batteries. J Am Chem Soc 134:5532–5535

    Article  CAS  Google Scholar 

  10. Chen XJ, Cheng M, Chen D, Wang R (2016) Shape-controlled synthesis of Co2P nanostructures and their application in supercapacitors. ACS Appl Mater Interfaces 8:3892–3900

    Article  CAS  Google Scholar 

  11. Boyanov S, Bernardi J, Gillot F, Dupont L, Womes M, Tarascon J, Monconduit L, Doublet M (2006) FeP: another attractive anode for the Li-ion battery enlisting a reversible two-step insertion/conversion process. Chem Mater 18:3531–3538

    Article  CAS  Google Scholar 

  12. Cheng M, Fan HS, Xu YY, Wang RM, Zhang XX (2017) Hollow Co2P nanoflowers organized by nanorods for ultralong cycle-life supercapacitors. Nanoscale 9:14162–14171

    Article  CAS  Google Scholar 

  13. Walter M, Bodnarchuk MI, Kravchyk KV, Kovalenko MV (2015) Evaluation of metal phosphide nanocrystals as anode materials for Na-ion batteries. Chimia 69:724–728

    Article  CAS  Google Scholar 

  14. Doan-Nguyen VV, Zhang S, Trigg EB, Agarwal R, Li J, Su D, Winey KI, Murray CB (2015) Synthesis and X-ray characterization of cobalt phosphide (Co2P) nanorods for the oxygen reduction reaction. ACS Nano 9:8108–8115

    Article  CAS  Google Scholar 

  15. Xu K, Ding H, Zhang MX, Chen M, Hao ZK, Zhang LD, Wu CZ, Xie Y (2017) Regulating water reduction kinetics in cobalt phosphide for enhancing HER catalytic activity in alkaline solution. Adv Mater 29:1606980. https://doi.org/10.1002/adma.201606980

    Article  CAS  Google Scholar 

  16. Xie QS, Zeng DQ, Gong PY, Huang J, Ma YT, Wang LS, Peng DL (2017) One-pot fabrication of graphene sheets decorated Co2P-Co hollow nanospheres for advanced lithium ion battery anodes. Electrochim Acta 232:465–473

    Article  CAS  Google Scholar 

  17. Lu A, Zhang X, Chen Y, Xie Q, Qi Q, Ma Y, Peng DL (2015) Synthesis of Co2P/graphene nanocomposites and their enhanced properties as anode materials for lithium ion batteries. J Power Sources 295:329–335

    Article  CAS  Google Scholar 

  18. Lou PL, Cui ZH, Jia ZQ, Sun JY, Tan YB, Guo XX (2017) Monodispersed carbon-coated cubic NiP2 nanoparticles anchored on carbon nanotubes as ultra-long-life anodes for reversible lithium storage. ACS Nano 11:3705–3715

    Article  CAS  Google Scholar 

  19. Yang J, Zhang Y, Sun CC, Liu HZ, Li LQ, Si WL, Huang W, Yan Y, Dong XC (2016) Graphene and cobalt phosphide nanowire composite as an anode material for high performance lithium-ion batteries. Nano Res 9:612–621

    Article  CAS  Google Scholar 

  20. Han F, Zhang CZ, Yang JX, Ma GZ, He KJ, Li XK (2016) Well-dispersed and porous FeP@C nanoplates with stable an ultrafast lithium storage performance through conversion reaction mechanism. J Mater Chem A 4:12781–12789

    Article  CAS  Google Scholar 

  21. Li Y, Yang RT (2007) Gas adsorption and storage in metal–organic framework MOF-177. Langmuir 23:12937–12944

    Article  CAS  Google Scholar 

  22. Liu D, Huxford RC, Lin W (2011) Phosphorescent nanoscale coordination polymers as contrast agents for optical imaging Angew. Chem Int Ed 50:3696–3710

    Article  CAS  Google Scholar 

  23. Li SL, Xu Q (2013) Metal–organic frameworks as platforms for clean energy. Energ Environ Sci 6:1656–1683

    Article  CAS  Google Scholar 

  24. Qu Q, Yun J, Wan Z, Zheng H, Gao T, Shen M (2014) MOF derived microporous carbon as a better choice for Na-ion batteries than mesoporous CMK-3. RSC Adv 4:64692–64697

    Article  CAS  Google Scholar 

  25. Sindoro M, Yanai N, Jee AY, Granick S (2013) Colloidal-sized metal–organic frameworks: synthesis and applications. Acc Chem Res 47:459–469

    Article  Google Scholar 

  26. Cao X, Zheng B, Rui X, Shi W, Yan Q, Zhang H (2014) Metal oxide coated three-dimensional graphene prepared by the use of metal–organic frameworks as precursors. Angew Chem Int Ed 53:1404–1409

    Article  CAS  Google Scholar 

  27. Kong LJ, Zhu J, Shuang W, Bu XH (2018) Nitrogen-doped wrinkled carbon foils derived from MOF nanosheets for superior sodium storage. Adv Energy Mater. https://doi.org/10.1002/aenm.201801515

    Article  Google Scholar 

  28. Kong LJ, Xie CC, Gu HC, Wang CP, Zhou XL, Liu J, Zhou Z, Li ZY, Zhu J, Bu XH (2018) Thermal instability induced oriented 2D pores for enhanced sodium storage. Small 14:1800639. https://doi.org/10.1002/smll.201800639

    Article  CAS  Google Scholar 

  29. Zhong M, Yang DH, Xie CC, Zhang Z, Zhou Z, Bu XH (2016) Yolk-shell MnO@ZnMn2O4/N-C nanorods derived from α-MnO2/ZIF-8 as anode materials for lithium ion batteries. Small 12:5564–5571

    Article  CAS  Google Scholar 

  30. Wu R, Qian X, Rui X, Liu H, Yadian B, Zhou K (2014) Zeolitic imidazolate framework 67-derived high symmetric porous Co3O4 hollow dodecahedra with highly enhanced lithium storage capability. Small 10:1932–1938

    Article  CAS  Google Scholar 

  31. Su P, Liao S, Rong F, Wang F, Chen J, Li C (2014) Enhanced lithium storage capacity of Co3O4 hexagonal nanorings derived from Co-based metal organic frameworks. J Mater Chem A 2:17408–17414

    Article  CAS  Google Scholar 

  32. Ma YT, Huang J, Lin L, Xie QS, Yan MY, Qu BH, Wang LS, Mai LQ, Peng DL (2017) Self-assembly synthesis of 3D graphene-encapsulated hierarchical Fe3O4 nano-flower architecture with high lithium storage capacity and excellent rate capability. J Power Sources 365:98–108

    Article  CAS  Google Scholar 

  33. Guan C, Liu XM, Elshahawy AM, Zhang H, Wu HJ, Pennycook SJ, Wang J (2017) Metal–organic framework derived hollow CoS2 nanotube arrays: an efficient bifunctional electrocatalyst for overall water splitting. Nanoscale Horiz 2:342–348

    Article  CAS  Google Scholar 

  34. Pang HC, Sun WW, Lv LP, Jin FY, Wang Y (2016) MOF-templated nanorice-nanosheet core-satellite iron dichalcogenides by heterogeneous sulfuration for high-performance lithium ion batteries. J Mater Chem A 4:19179–19188

    Article  CAS  Google Scholar 

  35. Wu C, Yang YJ, Dong D, Zhang YH, Li JH (2017) In situ coupling of CoP polyhedrons and carbon nanotubes as highly efficient hydrogen evolution reaction electrocatalyst. Small 13:1602873. https://doi.org/10.1002/smll.201602873

    Article  CAS  Google Scholar 

  36. Li G, Yang H, Li F, Du J, Shi W, Chen P (2016) Facile Formation of a nanostructured NiP2@C material for advanced lithium-ion battery anode using adsorption property of metal–organic framework. J Mater Chem A 4:9593–9599

    Article  CAS  Google Scholar 

  37. Huang G, Zhang F, Du X, Qin Y, Wang L (2015) Metal organic frameworks route to in situ insertion of multiwalled carbon nanotubes in Co3O4 polyhedra as anode materials for lithium-ion batteries. ACS Nano 9:1592–1599

    Article  CAS  Google Scholar 

  38. Zhang J, Zhang K, Yang J, Lee G, Shin J, Lau VW, Kang YM (2018) Bifunctional conducting polymer coated CoP core-shell nanowires on carbon paper as a free-standing anode for sodium ion batteries. Adv Energy Mater 8:1800283. https://doi.org/10.1002/aenm.201800283

    Article  CAS  Google Scholar 

  39. Das D, Das A, Reghunath M, Nanda KK (2017) Phosphine-free avenue to Co2P nanoparticle encapsulated N, P co-doped CNTs: a novel non-enzymatic glucose sensor and an efficient electrocatalyst for oxygen evolution reaction. Green Chem 19:1327–1335

    Article  CAS  Google Scholar 

  40. Ge XL, Li ZQ, Yin LW (2017) Metal–organic frameworks derived porous core/shell CoP@C polyhedrons anchored on 3D reduced graphene oxide networks as anode for sodium-ion battery. Nano Energy 32:117–124

    Article  CAS  Google Scholar 

  41. Zhu YP, Liu YP, Ren TZ, Yuan ZY (2015) Self-supported cobalt phosphide mesoporous nanorod arrays: a flexible and bifunctional electrode for highly active electrocatalytic water reduction and oxidation Adv. Funct Mater 25:7337–7347

    Article  CAS  Google Scholar 

  42. He PL, Yu XY, Lou XW (2017) Carbon-incorporated nickel–cobalt mixed metal phosphide nanoboxes with enhanced electrocatalytic activity for oxygen evolution Angew. Chem Int Ed 56:3897–3900

    Article  CAS  Google Scholar 

  43. Wang JM, Yang WR, Liu JQ (2016) CoP2 nanoparticles on reduced graphene oxide sheets as a super-efficient bifunctional electrocatalyst for full water splitting. J Mater Chem A 4:4686–4690

    Article  CAS  Google Scholar 

  44. Jiang P, Liu Q, Ge CJ, Cui W, Pu ZH, Asiri AM, Sun XP (2014) CoP nanostructures with different morphologies: synthesis, characterization and a study of their electrocatalytic performance toward the hydrogen evolution reaction. J Mater Chem A 2:14634–14640

    Article  CAS  Google Scholar 

  45. Yang D, Zhu J, Rui X, Tan H, Cai R, Hoster HE, Yu D, Hng HH, Yan Q (2013) Synthesis of Cobalt phosphides and their application as anodes for lithium ion batteries. ACS Appl Mater Interfaces 5:1093–1099

    Article  Google Scholar 

  46. Khatib R, Dalverny AL, Saubanère M, Gaberscek M, Doublet ML (2013) Origin of the voltage hysteresis in the CoP conversion material for Li-ion batteries. J Phys Chem C 117:837–849

    Article  CAS  Google Scholar 

  47. Lu A, Zhang XQ, Chen YZ, Xie QS, Qi QQ, Ma YT, Peng DL (2015) Synthesis of Co2P/graphene nanocomposites and their enhanced properties as anode materials for lithium ion batteries. J Power Sources 295:329–335

    Article  CAS  Google Scholar 

  48. Zhang K, Park M, Zhang J, Lee GH, Shin J, Kang YM (2017) Cobalt phosphide nanoparticles embedded in nitrogen-doped carbon nanosheets: promising anode material with high rate capability and long cycle life for sodium-ion batteries. Nano Res 10:4337–4350

    Article  CAS  Google Scholar 

  49. Yin LX, Chai SM, Huang JF, Kong XG, Wang J, Liu Y (2017) Preparation and enhanced lithium-ion storage performance of 3D network-like SnS2 anode. J Alloys Compd 727:1006–1013

    Article  CAS  Google Scholar 

  50. Yang C, Yu S, Lin CF, Lv F, Wu SQ, Yang Y, Wang W, Zhu ZZ, Li JB, Wang N, Guo SJ (2017) Cr0.5Nb24.5O62 nanowires with high electronic conductivity for high-rate and long-life lithium-ion storage. ACS Nano 11:4217–4224

    Article  CAS  Google Scholar 

  51. Xing YL, Wang SB, Fang BZ, Song G, Wilkinson DP, Zhang SC (2018) N-doped hollow urchin-like anatase TiO2@C composite as a novel anode for Li-ion batteries. J Power Sources 385:10–17

    Article  CAS  Google Scholar 

  52. Zeng KW, Li XH, Wang ZX, Guo HJ, Wang JX, Li T, Pan W, Shih K (2017) Cave-embedded porous Mn2O3 hollow microsphere as anode material for lithium ion batteries. Electrochim Acta 247:795–802

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is partly supported by the National Natural Science Foundation of China (No. 11705015), Natural Science Foundation of Jiangsu Educational Department (No. 15KJA430001), Foundation of Jiangsu Science and Technology Department (Grant No. BA2016041), Science and Technology Plan Project of Suzhou (No. SYG201738 and SZS201710) and Scientific Research Foundation of University (No. XZ1628).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shi Tao or Bin Qian.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4387 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, G., Gu, Y., Wang, J. et al. Porous CoP/C@MCNTs hybrid composite derived from metal–organic frameworks for high-performance lithium-ion batteries. J Mater Sci 54, 3273–3283 (2019). https://doi.org/10.1007/s10853-018-3064-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-3064-z

Keywords

Navigation