Skip to main content
Log in

Dynamic crack propagation behaviors of calcium carbonate: aragonite

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Molecular dynamics simulations are carried out in this report to study the dynamic fracture behaviors of single crystal aragonite. Two typical edge and central model I cracks that along [010] and [100] directions, respectively, are introduced to the aragonite plates. Our simulation results reveal that (110) and (010) planes are the preferable cleavage planes for crack propagation in aragonite, which is in good agreement with the experimental observations. Brittle and ductile fracture behaviors are identified when the applied tensile loadings are along [010] and [100] directions, respectively. Zigzag crack propagation path, i.e., crack deflections, is observed in the uniaxial tension simulation of the models with [010]-oriented cracks. Overall, the cracks prefer to propagate along (110) plane. Stable nonlinear crack growth and the following unstable crack propagation are identified through analyzing the crack growth resistance. For the case with [100]-oriented crack, straight propagation path and flat (010) crack surfaces are revealed after the fracture of aragonite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Zhang N, Chen Y (2013) Nanoscale plastic deformation mechanism in single crystal aragonite. J Mater Sci 48(2):785–796. https://doi.org/10.1007/s10853-012-6796-1

    Article  CAS  Google Scholar 

  2. Zhang N (2013) Molecular mechanistic origin of the mechanical properties of nacre. University of Florida, Gainesville

    Google Scholar 

  3. Araki Y et al (2012) Atomic-resolution imaging of aragonite (001) surface in water by frequency modulation atomic force microscopy. Jpn J Appl Phys 51(8S3):08KB09

    Article  Google Scholar 

  4. Zhang N et al (2016) Nanoscale toughening mechanism of nacre tablet. J Mech Behav Biomed Mater 53:200–209

    Article  CAS  Google Scholar 

  5. Zhang N, Chen Y (2012) Molecular origin of the sawtooth behavior and the toughness of nacre. Mater Sci Eng C 32(6):1542–1547

    Article  CAS  Google Scholar 

  6. Islam KN et al (2013) A novel method for the synthesis of calcium carbonate (aragonite) nanoparticles from cockle shells. Powder Technol 235:70–75

    Article  CAS  Google Scholar 

  7. Litvin YA (2017) Mantle rocks and diamond-associated phases: role in diamond origin. In: Genesis of diamonds and associated phases. Springer, pp 7–29

  8. Kearney C et al (2006) Nanoscale anisotropic plastic deformation in single crystal aragonite. Phys Rev Lett 96(25):255505

    Article  CAS  Google Scholar 

  9. Han YH et al (1991) Knoop microhardness anisotropy of single-crystal aragonite. J Am Ceram Soc 74(12):3129–3132

    Article  CAS  Google Scholar 

  10. Liu L-G et al (2005) Elasticity of single-crystal aragonite by Brillouin spectroscopy. Phys Chem Miner 32(2):97–102

    Article  Google Scholar 

  11. Huang Z et al (2011) Uncovering high-strain rate protection mechanism in nacre. Sci Rep 1:148

    Article  CAS  Google Scholar 

  12. Miyake A, Kawano J (2010) High-temperature molecular dynamics simulation of aragonite. J Phys: Condens Matter 22(22):225402

    Google Scholar 

  13. Liu J et al (2000) Simulation of structural transformation in aragonite CaCO3. In: AIP conference proceedings. AIP

  14. Ono S et al (2005) Post-aragonite phase transformation in CaCO3 at 40 GPa. Am Miner 90(4):667–671

    Article  CAS  Google Scholar 

  15. Arapan S, Ahuja R (2010) High-pressure phase transformations in carbonates. Phys Rev B 82(18):184115

    Article  Google Scholar 

  16. Zhang Y et al (2017) Mechanisms of crack propagation in nanoscale single crystal, bicrystal and tricrystal nickels based on molecular dynamics simulation. Results Phys 7:1722–1733

    Article  Google Scholar 

  17. Lu Z, Liu Y (2010) Small time scale fatigue crack growth analysis. Int J Fatigue 32(8):1306–1321

    Article  CAS  Google Scholar 

  18. Sun L et al (2014) Deformation and failure mechanisms of nanotwinned copper films with a pre-existing crack. Mater Sci Eng A 606:334–345

    Article  CAS  Google Scholar 

  19. Hocker S et al (2016) Molecular dynamics simulations of tensile tests of Ni-, Cu-, Mg-and Ti-alloyed aluminium nanopolycrystals. Comput Mater Sci 116:32–43

    Article  CAS  Google Scholar 

  20. Borodin V, Vladimirov P (2011) Molecular dynamics simulations of quasi-brittle crack development in iron. J Nucl Mater 415(3):320–328

    Article  CAS  Google Scholar 

  21. Wang S et al (2016) Atomically sharp crack tips in monolayer MoS2 and their enhanced toughness by vacancy defects. ACS Nano 10(11):9831–9839

    Article  CAS  Google Scholar 

  22. Zhang P et al (2014) Fracture toughness of graphene. Nat Commun 5:3782

    Article  CAS  Google Scholar 

  23. Zhang N, Shahsavari R (2016) Balancing strength and toughness of calcium-silicate-hydrate via random nanovoids and particle inclusions: Atomistic modeling and statistical analysis. J Mech Phys Solids 96:204–222

    Article  CAS  Google Scholar 

  24. Rountree CL et al (2002) Atomistic aspects of crack propagation in brittle materials: Multimillion atom molecular dynamics simulations. Annu Rev Mater Res 32(1):377–400

    Article  CAS  Google Scholar 

  25. Buehler MJ, Abraham FF, Gao H (2003) Hyperelasticity governs dynamic fracture at a critical length scale. Nature 426(6963):141

    Article  CAS  Google Scholar 

  26. Murali P et al (2011) Atomic scale fluctuations govern brittle fracture and cavitation behavior in metallic glasses. Phys Rev Lett 107(21):215501

    Article  CAS  Google Scholar 

  27. Zhang N, Zaeem MA (2016) Competing mechanisms between dislocation and phase transformation in plastic deformation of single crystalline yttria-stabilized tetragonal zirconia nanopillars. Acta Mater 120:337–347

    Article  CAS  Google Scholar 

  28. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19

    Article  CAS  Google Scholar 

  29. Verlet L (1967) Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys Rev 159(1):98

    Article  CAS  Google Scholar 

  30. Dove MT et al (1992) A new interatomic potential model for calcite; applications to lattice dynamics studies, phase transition, and isotope fractionation. Am Miner 77(3–4):244–250

    CAS  Google Scholar 

  31. Deng Q, Xiong L, Chen YJIJP (2010) Coarse-graining atomistic dynamics of brittle fracture by finite element method. Int J Plast 26(9):1402–1414

    Article  CAS  Google Scholar 

  32. Lawn B, Wilshaw TR (1993) Fracture of brittle solids. Cambridge University Press, Cambridge

    Book  Google Scholar 

  33. Kwak M, Shindo H (2005) Atomic force microscopic observation of facet formation on various faces of aragonite in aqueous acetic acid. J Cryst Growth 275(1–2):e1655–e1659

    Article  CAS  Google Scholar 

  34. Shindo H, Kwak M (2005) Stabilities of crystal faces of aragonite (CaCO3) compared by atomic force microscopic observation of facet formation processes in aqueous acetic acid. Phys Chem Chem Phys 7(4):691–696

    Article  CAS  Google Scholar 

  35. Huggins ML (1922) The crystal structures of aragonite (CaCO3) and related minerals. Phys Rev 19(4):354

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Science Foundation under Award Numbers CMMI-0855795 and DARPA under Award Number N66001-10-1-4018. Simulations were performed at the High Performance Computing Center at the University of Florida.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, N., Hong, Y. & Chen, Y. Dynamic crack propagation behaviors of calcium carbonate: aragonite. J Mater Sci 54, 2779–2786 (2019). https://doi.org/10.1007/s10853-018-3028-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-3028-3

Keywords

Navigation