Skip to main content

Advertisement

Log in

Enhancing electrospun scaffolds of PVP with polypyrrole/iodine for tissue engineering of skin regeneration by coating via a plasma process

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Electrospun scaffolds of biopolymers have been used in skin tissue engineering to develop and create artificial skin tissue for replacement dermal substitutes. Moreover, electrospun scaffolds are used to improve wound dressing for assisting the wound healing process. We focus on the polypyrrole/iodine coating viability and observe the cultures of human epidermal keratinocytes (HaCaT) responding to improve scaffolds for skin tissue engineering. For this purpose, polyvinylpyrrolidone polymer was used as a polymer matrix. The FE-SEM analysis showed the morphologies obtained (fibers and spheres) by the different solvents used in polyvinylpyrrolidone solutions due to the polarity of the solvents. The polyvinylpyrrolidone fibers have an average diameter of 135.6 nm ± 1.4 nm, and polyvinylpyrrolidone spheres have diameters of 1.01–1.6 µm. Elemental analysis showed the incorporation of polypyrrole/iodine on polyvinylpyrrolidone scaffolds. An XRD study displayed the amorphous structure of polyvinylpyrrolidone fibers and spheres. Using FTIR, it was possible to identify the functional groups representative of polyvinylpyrrolidone, and the presence of the coating of polypyrrole was demonstrated. Polypyrrole/iodine proved to be a scaffolding with an optimal coating for the cellular growth of HaCaT cells, increasing viability, adhesion, and cell healing.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

PVP:

Polyvinylpyrrolidone

PPy/I:

Polypyrrole/iodine

ECM:

Extracellular matrix

References

  1. Jiang H, Grinnell F (2005) Cell-matrix entanglement and mechanical anchorage of fibroblasts in three-dimensional collagen matrices. Mol Biol Cell 16(11):5070–5076

    Article  CAS  Google Scholar 

  2. Jeong KH, Park D, Lee YC (2017) Polymer-based hydrogel scaffolds for skin tissue engineering applications: a mini-review. J Polym Res 24(7):112

    Article  Google Scholar 

  3. Chattopadhyay S, Raines RT (2014) Review collagen-based biomaterials for wound healing. Biopolymers 101(8):821–833

    Article  CAS  Google Scholar 

  4. Valencia-Lazcano AA, Román-Doval R, La Cruz-Burelo D, Millán-Casarrubias EJ, Rodríguez-Ortega A (2017) Enhancing surface properties of breast implants by using electrospun silk fibroin. J Biomed Mater Res B Appl Biomater 106:1655–1661

    Article  Google Scholar 

  5. Krell R (1996) Value-added products from beekeeping, vol 124. Food and Agriculture Organization, Rome

    Google Scholar 

  6. Kamel RA, Ong JF, Eriksson E, Junker JP, Caterson EJ (2013) Tissue engineering of skin. J Am Coll Surg 217(3):533–555

    Article  Google Scholar 

  7. Böttcher-Haberzeth S, Biedermann T, Reichmann E (2010) Tissue engineering of skin. Burns 36(4):450–460

    Article  Google Scholar 

  8. Nguyen TTT, Ghosh C, Hwang SG, Dai Tran L, Park JS (2013) Characteristics of curcumin-loaded poly (lactic acid) nanofibers for wound healing. J Mater Sci 48(20):7125–7133. https://doi.org/10.1007/s10853-013-7527-y

    Article  CAS  Google Scholar 

  9. Asran AS, Razghandi K, Aggarwal N, Michler GH, Groth T (2010) Nanofibers from blends of polyvinyl alcohol and polyhydroxy butyrate as potential scaffold material for tissue engineering of skin. Biomacromol 11(12):3413–3421

    Article  CAS  Google Scholar 

  10. Zhong SP, Zhang YZ, Lim CT (2010) Tissue scaffolds for skin wound healing and dermal reconstruction. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2(5):510–525

    Article  CAS  Google Scholar 

  11. Hixon KR, Lu T, Sell SA (2017) A comprehensive review of cryogels and their roles in tissue engineering applications. Acta Biomater 62:29–41

    Article  CAS  Google Scholar 

  12. Diekjürgen D, Grainger DW (2017) Polysaccharide matrices used in 3D in vitro cell culture systems. Biomaterials 141:96–115

    Article  Google Scholar 

  13. Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32(8):773–785

    Article  CAS  Google Scholar 

  14. Jayarama Reddy V, Radhakrishnan S, Ravichandran R, Mukherjee S, Balamurugan R, Sundarrajan S, Ramakrishna S (2013) Nanofibrous structured biomimetic strategies for skin tissue regeneration. Wound Repair Regen 21(1):1–16

    Article  Google Scholar 

  15. Goh YF, Shakir I, Hussain R (2013) Electrospun fibers for tissue engineering, drug delivery, and wound dressing. J Mater Sci 48(8):3027–3054. https://doi.org/10.1007/s10853-013-7145-8

    Article  CAS  Google Scholar 

  16. Okamoto M, John B (2013) Synthetic biopolymer nanocomposites for tissue engineering scaffolds. Prog Polym Sci 38(10):1487–1503

    Article  CAS  Google Scholar 

  17. Haaf F, Sanner A, Straub F (1985) Polymers of N-vinylpyrrolidone: synthesis, characterization and uses. Polym J 17(1):143–152

    Article  CAS  Google Scholar 

  18. Yu DG, Zhang XF, Shen XX, Brandford-White C, Zhu LM (2009) Ultrafine ibuprofen-loaded polyvinylpyrrolidone fiber mats using electrospinning. Polym Int 58(9):1010–1013

    Article  CAS  Google Scholar 

  19. Hegemann D, Brunner H, Oehr C (2003) Plasma treatment of polymers for surface and adhesion improvement. Nucl Instrum Methods Phys Res, Sect B 208:281–286

    Article  CAS  Google Scholar 

  20. Flores-Sánchez MG, Raya-Rivera AM, Esquiliano-Rendon DR, Ontiveros-Nevares PG, Islas-Arteaga NC, Morales-Corona J, Olayo R (2018) Scaffolds of polylactic acid/hydroxyapatite coated by plasma with polypyrrole-iodine for the generation of neo-tissue–bone in vivo: study in rabbit. Int J Polym Mater Polym Biomater 67(7):427–437

    Article  Google Scholar 

  21. Yarin AL, Koombhongse S, Reneker DH (2001) Taylor cone and jetting from liquid droplets in electrospinning of nanofibers. J Appl Phys 90(9):4836–4846

    Article  CAS  Google Scholar 

  22. Ruozi B, Parma B, Croce MA, Tosi G, Bondioli L, Vismara S et al (2009) Collagen-based modified membranes for tissue engineering: influence of type and molecular weight of GAGs on cell proliferation. Int J Pharm 378(1):108–115

    Article  CAS  Google Scholar 

  23. Berridge MV, Tan AS (1993) Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction. Arch Biochem Biophys 303(2):474–482

    Article  CAS  Google Scholar 

  24. Comyn J (1997) Handbook of organic solvent properties: Ian M. Smallwood Arnold £65.00. ISBN 0 340 64578 4. 306 pages + xxi

  25. Bock N, Woodruff MA, Hutmacher DW, Dargaville TR (2011) Electrospraying, a reproducible method for production of polymeric microspheres for biomedical applications. Polymers 3(1):131–149

    Article  CAS  Google Scholar 

  26. Yu DG, Yang JH, Wang X, Tian F (2012) Liposomes self-assembled from electrosprayed composite microparticles. Nanotechnology 23(10):105606

    Article  Google Scholar 

  27. Eisa WH, Al-Ashkar E, El-Mossalamy SM, Ali SS (2016) PVP induce self-seeding process for growth of Au@ Ag core@ shell nanocomposites. Chem Phys Lett 651:28–33

    Article  CAS  Google Scholar 

  28. Lewandowska K (2011) Miscibility and interactions in chitosan acetate/poly (N-vinylpyrrolidone) blends. Thermochim Acta 517(1):90–97

    Article  CAS  Google Scholar 

  29. Koczkur KM, Mourdikoudis S, Polavarapu L, Skrabalak SE (2015) Polyvinylpyrrolidone (PVP) in nanoparticle synthesis. Dalton Trans 44(41):17883–17905

    Article  CAS  Google Scholar 

  30. Tavakkol E, Tavanai H, Abdolmaleki A, Morshed M (2017) Production of conductive electrospun polypyrrole/poly (vinyl pyrrolidone) nanofibers. Synth Met 231:95–106

    Article  CAS  Google Scholar 

  31. Cruz GJ, Olayo MG, López OG, Gómez LM, Morales J, Olayo R (2010) Nanospherical particles of polypyrrole synthesized and doped by plasma. Polymer 51(19):4314–4318

    Article  CAS  Google Scholar 

  32. Alvarez-Mejia L, Morales J, Cruz GJ, Olayo MG, Olayo R, Díaz-Ruíz A et al (2015) Functional recovery in spinal cord injured rats using polypyrrole/iodine implants and treadmill training. J Mater Sci Mater Med 26(7):1–11. https://doi.org/10.1007/s10856-015-5541-0

    Article  CAS  Google Scholar 

  33. Zhu G, Wang F, Gao Q, Xu K, Liu Y (2014) Modification of hydrophilic poly (vinyl alcohol) film via blending with hydrophobic poly (butyl acrylate-co-methyl methacrylate). Res Chem Intermed 40(4):1583–1593

    Article  CAS  Google Scholar 

  34. Pelipenko J, Kocbek P, Kristl J (2015) Nanofiber diameter as a critical parameter affecting skin cell response. Eur J Pharm Sci 66:29–35

    Article  CAS  Google Scholar 

  35. Badami AS, Kreke MR, Thompson MS, Riffle JS, Goldstein AS (2006) Effect of fiber diameter on spreading, proliferation, and differentiation of osteoblastic cells on electrospun poly (lactic acid) substrates. Biomaterials 27(4):596–606

    Article  CAS  Google Scholar 

  36. Christopherson GT, Song H, Mao HQ (2009) The influence of fiber diameter of electrospun substrates on neural stem cell differentiation and proliferation. Biomaterials 30(4):556–564

    Article  CAS  Google Scholar 

  37. Noriega SE, Hasanova GI, Schneider MJ, Larsen GF, Subramanian A (2012) Effect of fiber diameter on the spreading, proliferation and differentiation of chondrocytes on electrospun chitosan matrices. Cells Tissues Organs 195(3):207–221

    Article  CAS  Google Scholar 

  38. He M, Jiang H, Wang R, Xie Y, Zhao C (2017) Fabrication of metronidazole loaded poly (ε-caprolactone)/zein core/shell nanofiber membranes via coaxial electrospinning for guided tissue regeneration. J Colloid Interface Sci 490:270–278

    Article  CAS  Google Scholar 

  39. Dong Y, Liao S, Ngiam M, Chan CK, Ramakrishna S (2009) Degradation behaviors of electrospun resorbable polyester nanofibers. Tiss Eng B Rev 15(3):333–351

    Article  CAS  Google Scholar 

  40. Gardel ML, Schneider IC, Aratyn-Schaus Y, Waterman CM (2010) Mechanical integration of actin and adhesion dynamics in cell migration. Annu Rev Cell Dev Biol 26:315–333

    Article  CAS  Google Scholar 

  41. Burnette DT, Shao L, Ott C, Pasapera AM, Fischer RS, Baird MA et al (2014) A contractile and counterbalancing adhesion system controls the 3D shape of crawling cells. J Cell Biol 205:83–96

    Article  CAS  Google Scholar 

  42. Hsu YC, Li L, Fuchs E (2014) Emerging interactions between skin stem cells and their niches. Nat Med 20(8):847–856

    Article  CAS  Google Scholar 

  43. Pastar I, Stojadinovic O, Yin NC, Ramirez H, Nusbaum AG, Sawaya A et al (2014) Epithelialization in wound healing: a comprehensive review. Adv Wound Care 3(7):445–464

    Article  Google Scholar 

  44. Sivamani RK (2014) Eicosanoids and keratinocytes in wound healing. Adv Wound Care 3(7):476–481

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank CONACYT for the scholarship awarded to Ramón Roman-Doval, Miriam Tellez-Cruz, Hugo Rojas-Chávez, Heriberto Cruz-Martínez, Gabriela Carrasco-Torres and cathedra 2014-2499 to Verónica Rocío Vásquez-Garzón. We thank Angel Guillen-Cervantes for support in the FE-SEM study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. Carrasco-Torres or V. R. Vásquez-Garzón.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Román-Doval, R., Tellez-Cruz, M.M., Rojas-Chávez, H. et al. Enhancing electrospun scaffolds of PVP with polypyrrole/iodine for tissue engineering of skin regeneration by coating via a plasma process. J Mater Sci 54, 3342–3353 (2019). https://doi.org/10.1007/s10853-018-3024-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-3024-7

Keywords

Navigation