Skip to main content
Log in

Large and temperature-insensitive piezoelectric strain in xBiFeO3–(1−x)Ba(Zr0.05Ti0.95)O3 lead-free piezoelectric ceramics

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Lead-free piezoelectric materials of xBiFeO3–(1−x)Ba(Zr0.05Ti0.95)O3–1.0 mol%MnO2 (BF–BZT) (0.62 ≤ x ≤ 0.74) were prepared by the traditional solid-state reaction process. The structure and high-temperature dielectric, ferroelectric as well as piezoelectric properties were investigated. X-ray diffraction analysis showed that BF–BZT ceramics exhibited pure perovskite structure with the coexistence of tetragonal and rhombohedral phases. Measurements of temperature-dependent dielectric permittivity revealed that BF–BZT ceramics gradually changed from the classical ferroelectrics to relaxors with increasing BZT content. The Curie temperature TC, coercive electric field Ec (80 kV/cm) and remnant polarization Pr (80 kV/cm) of 0.64BF–0.36BZT ceramics were 370 °C, 27.8 kV/cm and 24.22 μC/cm2, respectively. The unipolar strain of 0.64BF–0.36BZT reached up to 0.29% (d*33 = 485 pm/V), and the variation of temperature-dependent piezoelectric strain for 0.64BF–0.36BZT was about 17% from 50 to 180 °C, which was only 1/3, 1/2 and 1/10 of the BF–BT-, PZT-5H- and BNT-based piezoelectric ceramics, showing excellent thermal stability. These results indicated that BF–BZT ceramics were competitive candidates for lead-free piezoelectric applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Park SE, Shrout TR (1997) Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J Appl Phys 82:1804–1811

    Article  CAS  Google Scholar 

  2. Hollenstein E, Davis M, Damjanovic D et al (2005) Piezoelectric properties of Li- and Ta-modified (K0.5Na0.5)NbO3 ceramics. Appl Phys Lett 87:1829051–1829053

    Article  Google Scholar 

  3. Ang C, Yu Z, Jing Z, Guo R, Cross LE et al (2002) Piezoelectric and electrostrictive strain behavior of Ce-doped BaTiO3 ceramics. Appl Phys Lett 80:3424–3426

    Article  CAS  Google Scholar 

  4. Zhang S, Xia R, Shrout TR, Zang G et al (2006) Piezoelectric properties in perovskite 0.948(K0.5Na0.5)NbO3–0.052LiSbO3 lead-free ceramics. J Appl Phys 100:1041081–1041086

    Google Scholar 

  5. Sabolsky EM, James AR, Kwon S, Messing GL et al (2001) Piezoelectric properties of <001> textured Pb(Mg1/3Nb2/3)O3-PbTiO3 ceramics. Appl Phys Lett 78:2551–2553

    Article  CAS  Google Scholar 

  6. Sabolsky EM, Trolier-McKinstry S et al (2003) Dielectric and piezoelectric properties of <001> fiber-textured 0.675Pb(Mg1/3Nb2/3)O3–0.325PbTiO3 ceramics. J Appl Phys 93:4072–4080

    Article  CAS  Google Scholar 

  7. Yasuyoshi S, Hisaaki T, Tani T, Kazumasa T, Homma T (2004) Lead-free piezoceramics. Nature 432:84–87

    Article  Google Scholar 

  8. Kroutvar M, DucommunY HD, Bichler M, Schuh D, Abstreiter G, Finley JJ (2004) Optically programmable electron spin memory using semiconductor quantum dots. Nature 432:81–84

    Article  CAS  Google Scholar 

  9. Ren X (2004) Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching. Nat Mater 3:91–94

    Article  CAS  Google Scholar 

  10. Wang K, Yao FZ, Jo W et al (2013) Temperature-insensitive (K, Na)NbO3-based lead-free piezoactuator ceramics. Adv Funct Mater 23:4079–4086

    Article  CAS  Google Scholar 

  11. Leontsev SO, Eitel RE (2009) Dielectric and piezoelectric properties in Mn-modified (1−x)BiFeO3xBaTiO3 ceramics. J Am Ceram Soc 92:2957–2961

    Article  CAS  Google Scholar 

  12. Zhen YH, Li JF (2006) Normal sintering of (K, Na)NbO3-based ceramics: influence of sintering temperature on densification, microstructure, and electrical properties. J Am Ceram Soc 89:3669–3675

    Article  CAS  Google Scholar 

  13. Zhang ST, Bin Y, Cao WW (2012) The temperature-dependent electrical properties of Bi0.5Na0.5TiO3–BaTiO3–Bi0.5K0.5TiO3 near the morphotropic phase boundary. Acta Mater 60:469–475

    Article  CAS  Google Scholar 

  14. Acosta M, Novak N et al (2014) Relationship between electromechanical properties and phase diagram in the Ba(Zr0.2Ti0.8)O3x(Ba0.7Ca0.3)TiO3 lead-free piezoceramic. Acta Mater 80:48–55

    Article  CAS  Google Scholar 

  15. Zhang J, Pan Z, Guo FF, Liu WC, Chen YF (2015) Semiconductor/relaxor 0-3 type composites without thermal depolarization in Bi0.5Na0.5TiO3-based lead-free piezoceramics. Nat Commun 6:66151–661510

    Google Scholar 

  16. Liu W, Ren X (2009) Large piezoelectric effect in Pb-free ceramics. Phys Rev Lett 103:2576021–2576024

    Google Scholar 

  17. Kumar MM, Srinivas A, Suryanarayana SV (2000) Structure property relations in BiFeO3/BaTiO3 solid solutions. J Appl Phys 87:855–862

    Article  CAS  Google Scholar 

  18. Chen JG, Cheng JR (2016) High electric-induced strain and temperature-dependent piezoelectric properties of 0.75BF–0.25BZT lead-free ceramics. J Am Ceram Soc 99:536–542

    Article  CAS  Google Scholar 

  19. Yang HB, Zhou CR, Liu X (2013) Piezoelectric properties and temperature stabilities of Mn- and Cu-modified BiFeO3–BaTiO3 high temperature ceramics. J Eur Ceram Soc 33:1177–1183

    Article  CAS  Google Scholar 

  20. Liu XH, Xu Z, Wei XY, Yao X (2008) Ferroelectric and ferromagnetic properties of 0.7BiFe1−xCrxO3–0.3BaTiO3 solid solutions. J Am Ceram Soc 91:3731–3734

    Article  CAS  Google Scholar 

  21. Zhou Q, Zhou C, Yang H, Yuan C, Fan Q (2013) Piezoelectric and ferroelectric properties of Ga modified BiFeO3-BaTiO3 lead-free ceramics with high curie temperature. J Mater Sci Mater Electron 25:196–201

    Article  Google Scholar 

  22. Cen Z, Zhou C, Yang H, Lupascu DC (2013) Remarkably high-temperature stability of Bi(Fe1−xAlx)O3–BaTiO3 solid solution with near-zero temperature coefficient of piezoelectric properties. J Am Ceram Soc 96:2252–2256

    Article  CAS  Google Scholar 

  23. Tong K, Zhou CR, Wang J, Li QN (2017) Enhanced piezoelectricity and high-temperature sensitivity of Zn-modified BF–BT ceramics by in situ and ex situ measuring. Ceram Int 43:3734–3740

    Article  CAS  Google Scholar 

  24. Hao J, Shen B, Zhai J, Liu C, Roedel J (2013) Large strain response in 0.99(Bi0.5Na0.4K0.1)TiO3–0.01(KxNa1−x)NbO3 lead-free ceramics induced by the change of K/Na ratio in (KxNa1−x)NbO3. J Am Ceram Soc 96:3133–3140

    Article  CAS  Google Scholar 

  25. Shi J, Fan H, Liu X, Li Q (2014) Giant strain response and structure evolution in (Bi0.5Na0.5)0.945–x(Bi0.2Sr0.7□0.1)xBa0.055TiO3 ceramics. J Eur Ceram Soc 34:3675–3683

    Article  CAS  Google Scholar 

  26. Daniels JE, Jo W, Rödel J, Jones JL (2009) Electric-field-induced phase transformation at a lead-free morphotropic phase boundary: case study in a 93%(Bi0.5Na0.5)TiO3–7%BaTiO3 piezoelectric ceramic. Appl Phys Lett 95:0329041–0329043

    Article  Google Scholar 

  27. Zhao W, Zuo R, Fu J (2014) Temperature-insensitive large electrostrains and electric field induced intermediate phases in (0.7−x)Bi(Mg1/2Ti1/2)O3xPb(Mg1/3Nb2/3)O3–0.3PbTiO3 ceramics. J Eur Ceram Soc 34:4235–4245

    Article  CAS  Google Scholar 

  28. Jo W, Granzow T, Aulbach E, Rödel J, Damjanovic D (2009) Origin of the large strain response in (K0.5Na0.5)NbO3-modified (Bi0.5Na0.5)TiO3-BaTiO3 lead-free piezoceramics. J Appl Phys 105:0941021–0941025

    Article  Google Scholar 

  29. Zhang H, Jo W, Wang K, Webber KG (2014) Compositional dependence of dielectric and ferroelectric properties in BiFeO3–BaTiO3 solid solutions. Ceram Int 40:4759–4765

    Article  CAS  Google Scholar 

  30. Zhu LF, Zhang BP, Shun L, Zhao GL (2017) Large piezoelectric responses of Bi(Fe, Mg, Ti)O3-BaTiO3 lead-free piezoceramics near the morphotropic phase boundary. J Alloy Compd 727:382–389

    Article  CAS  Google Scholar 

  31. Sharma S, Singh V, Anshul A, Siqueiros JM, Dwivedi RK (2018) Structural stability, enhanced magnetic, piezoelectric, and transport properties in (1−x)BiFeO3xBa0.70Sr0.30TiO3 nanoparticles. J Appl Phys 123:2041021–20410211

    Article  Google Scholar 

  32. Wei J, Fu D, Cheng JR, Chen JG (2017) Temperature dependence of the dielectric and piezoelectric properties of xBiFeO3–(1−x)BaTiO3 ceramics near the morphotropic phase boundary. J Mater Sci 52:10726–10737. https://doi.org/10.1007/s10853-017-1280-6

    Article  CAS  Google Scholar 

  33. Eitel RE, Randall CA, Shrout TR, Park SE (2002) Preparation and characterization of high temperature perovskite ferroelectrics in the solid-solution (1−x)BiScO3xPbTiO3. Jpn J Appl Phys 41:2099–2104

    Article  CAS  Google Scholar 

  34. Li F, Zhang S, Yang T et al (2016) The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals. Nat Commun 7:138071–138079

    Google Scholar 

  35. Qin Y, Zhang JL, Zhang SJ (2016) Domain configuration and thermal stability of (K0.48Na0.52)2(Nb0.96Sb0.04)O3–Bi0.50(Na0.82K0.18)0.50ZrO3 piezoceramics with high d33 coefficient. ACS Appl Mater Int 8:7257–7265

    Article  CAS  Google Scholar 

  36. Dong L, Stone DS, Lakes RS (2012) Enhanced dielectric and piezoelectric properties of xBaZrO3–(1−x)BaTiO3 ceramics. J Appl Phys 111:0841071–08410710

    Google Scholar 

  37. Wang K, Hussain A, Jo W, Rödel J (2012) Temperature-dependent properties of (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3–SrTiO3 lead-free piezoceramics. J Am Ceram Soc 95:2241–2247

    Article  CAS  Google Scholar 

  38. Zhang ST, Kounga AB, Aulbach E, Jo W, Rödel J (2008) Lead-free piezoceramics with giant strain in the system Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3. II. Temperature dependent properties. J Appl Phys 103:0341081–0341087

    Google Scholar 

  39. Wang DW, Amir K, Shunsuke M, Antonio F, Quanliang Z (2017) Temperature dependent, large electromechanical strain in Nd-doped BiFeO3–BaTiO3 lead-free ceramics. J Eur Ceram Soc 37:1857–1860

    Article  CAS  Google Scholar 

  40. Wang D, Fotinich Y, Carmangreg P (1998) Influence of temperature on the electromechanical and fatigue behavior of piezoelectric ceramics. J Appl Phys 83:5342–5350

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Grant No. 51302163, 51672169) and the Innovational Foundation of Shanghai University (Grant No. K. 10-0110-13-009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianguo Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, D., Ning, Z., Hu, D. et al. Large and temperature-insensitive piezoelectric strain in xBiFeO3–(1−x)Ba(Zr0.05Ti0.95)O3 lead-free piezoelectric ceramics. J Mater Sci 54, 1153–1161 (2019). https://doi.org/10.1007/s10853-018-2926-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2926-8

Keywords

Navigation