Skip to main content
Log in

Piezoelectric and ferroelectric properties of Ga modified BiFeO3–BaTiO3 lead-free ceramics with high Curie temperature

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

High-temperature 0.71 Bi(Fe1−x Ga x )O3–0.29 BaTiO3 (x = 0, 0.01, 0.015, 0.02, and 0.025) piezoelectric ceramics have been synthesized and their structure and electric properties have been investigated systemically. The Ga addition caused insignificant change of crystal structure. However, the addition of a small amount of Ga was quite effective to increase the grain size, densification, and piezoelectric properties. For the ceramics with x = 0.015, the maximum of piezoelectric constant (d 33), and electromechanical coupling factor (k p) are d 33 = 157 pC/N, k p = 0.326, respectively. Meanwhile, the increasing Curie temperature (T c), 467 °C, was obtained with x = 0.02 ceramics. Both remanent polarization P r and coercive field E c were reduced with increasing x.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T. Sebastian, I. Sterianou, I.M. Reaney, T. Leist, W. Jo, J. Rödel, J. Electroceram. 28, 95 (2012)

    Article  Google Scholar 

  2. B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric Ceramics (Academic, London, 1971)

    Google Scholar 

  3. F. Gao, R. Hong, J. Liu, Z. Li, L. Cheng, C. Tian, J. Alloys. Compd. 475, 619 (2009)

    Article  Google Scholar 

  4. Y. Chen, J. Zhu, D. Xiao, B. Qin, Y. Jiang, Mater. Lett. 62, 3567 (2008)

    Article  Google Scholar 

  5. C.J. Stringer, T.R. Shrout, C.A. Randall, I.M. Reaney, J. Appl. Phys. 99, 024106 (2006)

    Article  Google Scholar 

  6. S.M. Choi, C.J. Stringer, T.R. Shrout, C.A. Randall, J. Appl. Phys. 98, 034108 (2005)

    Article  Google Scholar 

  7. R.E. Eitel, C.A. Randall, T.R. Shrout, P.W. Rehrig, W. Hackenberger, S.E. Park, Jpn. J. Appl. Phys. 40, 5999 (2001)

    Article  Google Scholar 

  8. S.O. Leontsev, R.E. Eitel, J. Am. Ceram. Soc. 92, 2957 (2009)

    Article  Google Scholar 

  9. S.O. Leontsev, R.E. Eitel, J. Mater. Res. 26, 9 (2011)

    Article  Google Scholar 

  10. C. Zhou, A. Feteira, X. Shan, H. Yang, Q. Zhou, G. Chen, Appl. Phys. Lett. 101, 032901 (2012)

    Article  Google Scholar 

  11. I. Fujii, R. Mitsui, K. Nakashima, N. Kumada, M. Shimadal, J. Appl. Phys. 50, 09ND07 (2011)

    Article  Google Scholar 

  12. J. Cheng, Z. Meng, J. Appl. Phys. 98, 084102 (2005)

    Article  Google Scholar 

  13. J. Cheng, N. Li, L.E. Cross, J. Appl. Phys. 94, 5153 (2003)

    Article  Google Scholar 

  14. G. Catalan, J.F. Scott, Adv. Mater. 21, 2463 (2009)

    Article  Google Scholar 

  15. V.R. Palkar, R. Pinto, Pramana J. Phys. 58, 1003 (2002)

    Article  Google Scholar 

  16. Y.P. Wang, L. Zhou, M.F. Zhang, X.Y. Chen, J.M. Liu, Z.G. Liu, Appl. Phys. Lett. 84, 1731 (2004)

    Article  Google Scholar 

  17. Y. Jun, W. Moon, C. Chang, H. Kim, H.S. Ryu, J.W. Kim, K.H. Kim, S. Hing, Solid State Commun. 135, 133 (2005)

    Article  Google Scholar 

  18. C.R. Zhou, H.B. Yang, Q. Zhou, Z.Y. Cen, W.Z. Li, C.L. Yuan, H. Wang, Ceram. Int. 39, 4307 (2013)

    Article  Google Scholar 

  19. H.B. Yang, C.R. Zhou, X.Y. Liu, Q. Zhou, G.H. Chen, W.Z. Li, H. Wang, J. Eur. Ceram. Soc. 33, 1177 (2013)

    Article  Google Scholar 

  20. C.A. Randall, N. Kim, J.P. Kucera, W. Cao, T.R. Shrout, J. Am. Ceram. Soc. 81, 677 (1998)

    Article  Google Scholar 

  21. Q.M. Zhang, H. Wang, N. Kim, L.E. Cross, J. Appl. Phys. 75, 454 (1994)

    Article  Google Scholar 

  22. http://abulafia.mt.ic.ac.uk/shannon/ptable.php

Download references

Acknowledgments

This work was supported by the National Nature Science Foundation of China (61261012, 61361007 and 11364008) and Guangxi Education Department Foundation (201012MS083) and Guangxi Key Laboratory of Information Materials (1210908-206-Z and 1210908-222-Z) and Guangxi Experiment Center of Information Science Foundation (LD13103X).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changrong Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Q., Zhou, C., Yang, H. et al. Piezoelectric and ferroelectric properties of Ga modified BiFeO3–BaTiO3 lead-free ceramics with high Curie temperature. J Mater Sci: Mater Electron 25, 196–201 (2014). https://doi.org/10.1007/s10854-013-1573-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1573-8

Keywords

Navigation