Skip to main content
Log in

Preparation of recycled graphite/expanded polystyrene by a facile solvent dissolution method

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this paper, the waste graphite/expanded polystyrene was used as a raw material to prepare recycled graphite/expanded (rGEPS) foam board. A convenient and facile way to regenerate graphite/polystyrene beads was proposed in this work. This can be applied in the further industrial production. The solvent could be recycled, which made the process more efficient and economic. The rGEPS beads were analyzed by TGA, FTIR and XRD. The results indicated that the properties were not deteriorated. Then, the test results of rGEPS foam board, such as water absorption, apparent density, bending strength, compressive strength, thermal conductivity and oxygen index, showed that the properties have reached enterprise standards of expanded polystyrene (EPS) foam board. The thermal conductivity was decreased by 13.16% compared with EPS foam board. Therefore, the prepared rGEPS foam board could be considered as a candidate of the thermal insulation materials in construction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. John B, Reghunadhan Nair CP (2014) 13-Syntactic foams. In: Dodiuk H, Goodman SH (eds) Handbook of thermoset plastics, 3rd edn. William Andrew Publishing, Boston, pp 511–554. https://doi.org/10.1016/B978-1-4557-3107-7.00013-0

    Chapter  Google Scholar 

  2. Bhutta MAR, Ohama Y, Tsuruta K (2011) Strength properties of polymer mortar panels using methyl methacrylate solution of waste expanded polystyrene as binder. Constr Build Mater 25:779–784. https://doi.org/10.1016/j.conbuildmat.2010.07.006

    Article  Google Scholar 

  3. Aciu C, Manea DL, Molnar LM, Jumate E (2015) Recycling of polystyrene waste in the composition of ecological mortars. Proc Technol 19:498–505. https://doi.org/10.1016/j.protcy.2015.02.071

    Article  Google Scholar 

  4. Abdallah MA-E, Sharkey M, Berresheim H, Harrad S (2018) Hexabromocyclododecane in polystyrene packaging: a downside of recycling? Chemosphere 199:612–616. https://doi.org/10.1016/j.chemosphere.2018.02.084

    Article  CAS  Google Scholar 

  5. Brennan LB, Isaac DH, Arnold JC (2002) Recycling of acrylonitrile-butadiene-styrene and high-impact polystyrene from waste computer equipment. J Appl Polym Sci 86:572–578. https://doi.org/10.1002/app.10833

    Article  CAS  Google Scholar 

  6. Rani M, Shim WJ, Han GM, Jang M, Song YK, Hong SH (2014) Hexabromocyclododecane in polystyrene based consumer products: an evidence of unregulated use. Chemosphere 110:111–119. https://doi.org/10.1016/j.chemosphere.2014.02.022

    Article  CAS  Google Scholar 

  7. Sarmiento AM, Guzman HL, Morales G, Romero DE, Pataquiva-Mateus AY (2016) Expanded polystyrene (EPS) and waste cooking oil (WCO): from urban wastes to potential material of construction. Waste Biomass Valorization 7:1245–1254. https://doi.org/10.1007/s12649-016-9511-7

    Article  CAS  Google Scholar 

  8. Chaukura N, Gwenzi W, Bunhu T, Ruziwa DT, Pumure I (2016) Potential uses and value-added products derived from waste polystyrene in developing countries: a review. Resour Conserv Recycl 107:157–165. https://doi.org/10.1016/j.resconrec.2015.10.031

    Article  Google Scholar 

  9. Mohamed OA, Kassem NF (2010) Utilization of waste leather shavings as filler in paper making. J Appl Polym Sci 118:1713–1719. https://doi.org/10.1002/app.32315

    Article  CAS  Google Scholar 

  10. Shibamoto T, Yasuhara A, Katami T (2007) Dioxin formation from waste incineration. In: Ware GW (ed) Reviews of environmental contamination and toxicology. Springer, New York, pp 1–41. https://doi.org/10.1007/978-0-387-36903-7_1

    Chapter  Google Scholar 

  11. Bekri-Abbes I, Bayoudh S, Baklouti M (2006) Converting waste polystyrene into adsorbent: potential use in the removal of lead and cadmium ions from aqueous solution. J Polym Environ 14:249–256. https://doi.org/10.1007/s10924-006-0018-3

    Article  CAS  Google Scholar 

  12. Lipshutz BH, Gallou F, Handa S (2016) Evolution of solvents in organic chemistry. ACS Sustain Chem Eng 4:5838–5849. https://doi.org/10.1021/acssuschemeng.6b01810

    Article  CAS  Google Scholar 

  13. Costa P, Pinto F, Ramos AM, Gulyurtlu I, Cabrita I, Bernardo MS (2010) Study of the pyrolysis kinetics of a mixture of polyethylene, polypropylene, and polystyrene. Energy Fuels 24:6239–6247. https://doi.org/10.1021/ef101010n

    Article  CAS  Google Scholar 

  14. Hussain Z, Khan KM, Perveen S, Hussain K, Voelter W (2012) The conversion of waste polystyrene into useful hydrocarbons by microwave-metal interaction pyrolysis. Fuel Process Technol 94:145–150. https://doi.org/10.1016/j.fuproc.2011.10.009

    Article  CAS  Google Scholar 

  15. Mo Y, Zhao L, Chen C-L, Tan GYA, Wang J-Y (2012) Comparative pyrolysis upcycling of polystyrene waste: thermodynamics, kinetics, and product evolution profile. J Therm Anal Calorim 111:781–788. https://doi.org/10.1007/s10973-012-2464-6

    Article  CAS  Google Scholar 

  16. Koopmans RJ, Doelder JCFd, Paquet AN (2000) Modeling foam growth in thermoplastics. Adv Mater 12:1873–1880

    Article  CAS  Google Scholar 

  17. Jin SM, Cui KX, Guan HY, Yang M, Liu L, Lan CF (2012) Preparation of mesoporous MCM-41 from natural sepiolite and its catalytic activity of cracking waste polystyrene plastics. Appl Clay Sci 56:1–6. https://doi.org/10.1016/j.clay.2011.11.012

    Article  CAS  Google Scholar 

  18. Miller-Chou BA, Koenig JL (2003) A review of polymer dissolution. Prog Polym Sci 28:1223–1270. https://doi.org/10.1016/s0079-6700(03)00045-5

    Article  CAS  Google Scholar 

  19. Shikata S, Watanabe T, Hattori K, Aoyama M, Miyakoshi T (2011) Dissolution of polystyrene into cyclic monoterpenes present in tree essential oils. J Mater Cycles Waste Manag 13:127–130. https://doi.org/10.1007/s10163-011-0005-1

    Article  CAS  Google Scholar 

  20. Santiago LM, Masmoudi Y, Tarancón A, Djerafi R, Bagán H, García JF, Badens E (2015) Polystyrene based sub-micron scintillating particles produced by supercritical anti-solvent precipitation. J Supercrit Fluids 103:18–27. https://doi.org/10.1016/j.supflu.2015.04.015

    Article  CAS  Google Scholar 

  21. Gutiérrez C, Rodríguez JF, Gracia I, de Lucas A, García MT (2014) Preparation and characterization of polystyrene foams from limonene solutions. J Supercrit Fluids 88:92–104. https://doi.org/10.1016/j.supflu.2014.02.002

    Article  CAS  Google Scholar 

  22. Achilias DS, Giannoulis A, Papageorgiou GZ (2009) Recycling of polymers from plastic packaging materials using the dissolution–reprecipitation technique. Polym Bull 63:449–465. https://doi.org/10.1007/s00289-009-0104-5

    Article  CAS  Google Scholar 

  23. Mangalara SCH, Varughese S (2016) Green recycling approach to obtain nano- and microparticles from expanded polystyrene waste. Acs Sustain Chem Eng 4:6095–6100. https://doi.org/10.1021/acssuschemeng.6b01493

    Article  CAS  Google Scholar 

  24. Gutiérrez C, García MT, Gracia I, de Lucas A, Rodríguez JF (2012) The selective dissolution technique as initial step for polystyrene recycling. Waste Biomass Valorization 4:29–36. https://doi.org/10.1007/s12649-012-9131-9

    Article  CAS  Google Scholar 

  25. Garcia MT, Gracia I, Duque G, Lucas A, Rodriguez JF (2009) Study of the solubility and stability of polystyrene wastes in a dissolution recycling process. Waste Manag 29:1814–1818. https://doi.org/10.1016/j.wasman.2009.01.001

    Article  CAS  Google Scholar 

  26. Patino-Herrera R, Catarino-Centeno R, Gonzalez-Alatorre G, Goicochea AG, Perez E (2017) Enhancement of the hydrophobicity of recycled polystyrene films using a spin coating unit. J Appl Polym Sci. https://doi.org/10.1002/app.45365

    Article  Google Scholar 

  27. Cella RF, Mumbach GD, Andrade KL, Oliveira P, Marangoni C, Bolzan A, Bernard S, Machado RAF (2018) Polystyrene recycling processes by dissolution in ethyl acetate. J Appl Polym Sci. https://doi.org/10.1002/app.46208

    Article  Google Scholar 

  28. Musto P, La Manna P, Pannico M, Mensitieri G, Gargiulo N, Caputo D (2018) Molecular interactions of CO2 with the CuBTC metal organic framework: an FTIR study based on two-dimensional correlation spectroscopy. J Mol Struct 1166:326–333. https://doi.org/10.1016/j.molstruc.2018.04.058

    Article  CAS  Google Scholar 

  29. Roghani-Mamaqani H, Khezri K (2016) A grafting from approach to graft polystyrene chains at the surface of graphene nanolayers by RAFT polymerization: various graft densities from hydroxyl groups. Appl Surf Sci 360:373–382. https://doi.org/10.1016/j.apsusc.2015.11.041

    Article  CAS  Google Scholar 

  30. Hadi A, Zahirifar J, Karimi-Sabet J, Dastbaz A (2018) Graphene nanosheets preparation using magnetic nanoparticle assisted liquid phase exfoliation of graphite: the coupled effect of ultrasound and wedging nanoparticles. Ultrason Sonochem 44:204–214. https://doi.org/10.1016/j.ultsonch.2018.02.028

    Article  CAS  Google Scholar 

  31. Visscher WM, Bolsterli M (1972) Random packing of equal and unequal spheres in two and three dimensions. Nature 239:504–507. https://doi.org/10.1038/239504a0

    Article  Google Scholar 

  32. Kausch HH, Fesko DG, Tschoegl NW (1971) The random packing of circles in a plane. J Colloid Interface Sci 37:603–611. https://doi.org/10.1016/0021-9797(71)90338-9

    Article  CAS  Google Scholar 

  33. Attila Y, Güden M, Taşdemirci A (2013) Foam glass processing using a polishing glass powder residue. Ceram Int 39:5869–5877. https://doi.org/10.1016/j.ceramint.2012.12.104

    Article  CAS  Google Scholar 

  34. Bedeaux D, Kapral R (1983) The effective reaction rate and diffusion coefficients for a two-phase medium. J Chem Phys 79:1783–1788. https://doi.org/10.1063/1.446023

    Article  CAS  Google Scholar 

  35. Leach AG (1993) The thermal conductivity of foams. I. Models for heat conduction. J Phys D Appl Phys 26:733–739. https://doi.org/10.1088/0022-3727/26/5/003

    Article  CAS  Google Scholar 

  36. Collishaw PG, Evans JRG (1994) An assessment of expressions for the apparent thermal conductivity of cellular materials. J Mater Sci 29:2261–2273. https://doi.org/10.1007/bf00363413

    Article  CAS  Google Scholar 

  37. Kuhn J, Ebert HP, Arduini-Schuster MC, Büttner D, Fricke J (1992) Thermal transport in polystyrene and polyurethane foam insulations. Int J Heat Mass Transf 35:1795–1801. https://doi.org/10.1016/0017-9310(92)90150-Q

    Article  CAS  Google Scholar 

  38. Wrj J, Ac M (1983) Thermal conductivity of plastic foams. Polym Eng Sci 23:293–298. https://doi.org/10.1002/pen.760230602

    Article  Google Scholar 

  39. Ball GW, Hurd R, Walker MG (1970) The thermal conductivity on rigid urethane foams. J Cell Plast 6:66–75. https://doi.org/10.1177/0021955x7000600202

    Article  CAS  Google Scholar 

  40. Almanza O, Rodríguez-Pérez M, De Saja JA (1999) Thermal conductivity of polyethylene foams manufactured by a nitrogen solution process. Cell Polym 18:385–401

    CAS  Google Scholar 

  41. Chung DDL (2002) Review graphite. J Mater Sci 37:1475–1489. https://doi.org/10.1023/A:1014915307738

    Article  CAS  Google Scholar 

  42. Li L, Hu YH, Gu YL, Zhao YZ, Yu L, Huang BK (2017) Infrared extinction performance of biological materials. Spectrosc Spectr Anal 37:3430–3434. https://doi.org/10.3964/j.issn.1000-0593(2017)11-3430-05

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Graduated Innovation Fund of Jilin University (Project 2015082).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junfeng Li.

Ethics declarations

Conflict of interest

The authors declare that they do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Li, S., Jiang, H. et al. Preparation of recycled graphite/expanded polystyrene by a facile solvent dissolution method. J Mater Sci 54, 1197–1204 (2019). https://doi.org/10.1007/s10853-018-2890-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2890-3

Keywords

Navigation