Skip to main content

Advertisement

Log in

Recycling Expanded Polystyrene with a Biodegradable Solvent to Manufacture 3D Printed Prototypes and Finishing Materials for Construction

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The amount of plastic waste generated is causing damage to the environment, such as sea and soil pollution, and one of the alternatives for disposing of polymers is recycling. This work proposes recycling expanded polystyrene using a biodegradable solvent, its plastification with glycerol, and the preparation of the composite with post-consumer recycled gypsum for applications to manufacturing by 3D printing and for finishing materials for construction. Specimen for tensile testing and shore D hardness were prepared by injection process and by 3D printing. In addition, Thermogravimetric (TG), Fourier-transform infrared spectrometry (FTIR), Differential scanning calorimeter, Scanning electron microscope (FESEM) analyses, and flame propagation tests were also carried out. TG and FTIR analyses show that the recycling process did not degrade the material, and the addition of glycerol and gypsum improved the thermal stability of the composite. The mechanical properties of the injected and 3D printed samples with gypsum were similar, due to the dimensional stability of the manufactured filament, which improved the speed and quality of the specimen printing. The increase in ductility and the reduction in the glass transition temperature showed that the recycled expanded polystyrene (RPS) were effectively plasticized with the addition of 2 wt% glycerol, preserving their flame self-extinguishment when subjected to the flame propagation test. Due to these properties, the plasticized RPS can be used to manufacture articles for finishing in civil construction, and the RPS composite can be used to manufacture 3D printed prototypes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Qin ZH et al (2021) Biotechnology of plastic waste degradation, recycling, and valorization: current advances and future perspectives. Chemsuschem 14:13

    Article  CAS  Google Scholar 

  2. ABIPLAST. PERFIL 2020. Available at http://www.abiplast.org.br/wp-content/uploads/2021/08/Perfil2020_abiplast.pdf

  3. Idumah CI, Nwuzor IC (2019) Novel trends in plastic waste management. SN Appl Sci 1(11):1–14

    Article  CAS  Google Scholar 

  4. Browning S, Beymer-Farris B, Seay JR (2021) Addressing the challenges associated with plastic waste disposal and management in developing countries. Curr Opin Chem Eng 32(100682):7

    Google Scholar 

  5. Park S, Fu KK (2021) Polymer-based filament feedstock for additive manufacturing. Compos Sci Technol 213(108876):14

    Google Scholar 

  6. Tan LJ, Zhu W, Zhou K (2020) Recent progress on polymer materials for additive manufacturing. Adv Func Mater 30(43):1–54

    Article  CAS  Google Scholar 

  7. Zander NE et al (2019) Recycled polypropylene blends as novel 3D printing materials. Addit Manuf 25:122–130

    CAS  Google Scholar 

  8. Spoerk M et al (2019) Mechanical recyclability of polypropylene composites produced by material extrusion-based additive manufacturing. Polymers 11(8):1318

    Article  CAS  PubMed Central  Google Scholar 

  9. ABIQUIM. EPS BRASIL. Available at http://www.epsbrasil.eco.br/noticia/view/38/reciclagem-e-transformacao-do-eps-pos-consumo-em-novos-produtos-e-solucoes.html. Accessed on 22 May 2018

  10. Pieronia MC, Leonelb J, Fillmanna G (2017) Retardantes de chama bromados: uma revisão. Quim Nova 40(3):317–326

    Google Scholar 

  11. Gallo JB, Agnelli JAM (1998) Aspectos do comportamento de polímeros em condições de incêndio. Polímeros 8:23–38

    Article  CAS  Google Scholar 

  12. Ministry of Environment (2015) National implementation plan Stockolm convention. In: Brazilian Institute of Environment and Natural Renewable Resources

  13. Irvine DJ, McCluskey JA, Robinson IM (2000) Fire hazards and some common polymers. Polym Degrad Stab 67(3):383–396

    Article  CAS  Google Scholar 

  14. ABNT—Associação Brasileira De Normas Técnicas (2007) NBR11948—Poliestireno expandido para isolação térmica—Determinação de flamabilidade. Rio de Janeiro

  15. European Manufacturers of EPS. Behaviour of EPS in case of fire. Available at http://osfm.fire.ca.gov/codedevelopment/pdf/wgfsbim/EUMEPS_FireBehavior.pdf. Accessed on 11 Apr 2016

  16. Secretaria Do Estado Dos Negócios Da Segurança Pública. Polícia Militar (2011) Instrução Técnica n° 10—Controle de materiais de acabamento e de revestimento. Corpo de Bombeiros. pp 217–226

  17. Secretaria Do Estado Dos Negócios Da Segurança Pública. Polícia Militar (2011) Instrução Técnica n° 08—Resistência ao fogo dos elementos de construção. Corpo de Bombeiros. pp 191–202

  18. Maharana T, Negi YS, Mohanty B (2007) Review article: recycling of polystyrene. Polym-Plast Technol Eng 46(7):729–736

    Article  CAS  Google Scholar 

  19. ERCROS. Acetato de Etilo. Available at http://www.ercros.es/index.php?option=com_docman&task=doc_download&gid=753&Itemid=647. Accessed on 1 Jan 2016

  20. Singhal R, Ishita I, Sow PK (2019) Integrated polymer dissolution and solution blow spinning coupled with solvent recovery for expanded polystyrene recycling. J Polym Environ 27(6):1240–1251

    Article  CAS  Google Scholar 

  21. Cella RF et al (2018) Polystyrene recycling processes by dissolution in ethyl acetate. J Appl Polym Sci 135(18):1–7

    Article  CAS  Google Scholar 

  22. Yoshida E, Terada Y (2005) Micelle formation of a nonamphiphilic poly(vinylphenol)-block-polystyrene diblock copolymer in ethyl acetate. Colloid Polym Sci 283(11):1190–1196

    Article  CAS  Google Scholar 

  23. Sarkis CE (2009) Reciclagem de poliestireno expandido (EPS) para uso na fabricação de perfilados de poliestireno (PS). Universidade Federal de Santa Catarina, Florianópolis

    Google Scholar 

  24. Borsoi C (2012) Compósitos de poliestireno e poliestireno expandido reciclado reforçado com fibras de curauá: propriedades e degradação. Universidade de Caxias do Sul, Caxias do Sul

    Google Scholar 

  25. Caraschi JC, Leão AL (2002) Avaliação das propriedades mecânicas dos plásticos reciclados provenientes de resíduos sólidos urbanos. Acta Sci 24(6):1599–1602

    CAS  Google Scholar 

  26. Brydson JA (1995) Plastics based on styrene. Plastics materials, 6th edn. British Plastics and Rubber, Oxford, pp 410–448

    Chapter  Google Scholar 

  27. Sjoerdsma SD (1986) The effect of glycerol on the crazing behaviour of polystyrene in relation to the craze boundary temperature. Polymer 27(2):164–168

    Article  CAS  Google Scholar 

  28. Andreson T (2005) Elastic-plastic fracture mechanics. Fracture mechanics: fundamentals and applications, 3rd edn. Taylor & Francis, Boca Raton, pp 117–182

    Chapter  Google Scholar 

  29. Schlemmer D, Sales MJA, Resck IS (2010) Preparação, caracterização e degradação de blendas PS/TPS usando glicerol e óleo de buriti como plastificantes. Polímeros 20(1):6–13

    Article  CAS  Google Scholar 

  30. Schlemmer D, de Oliveira ER, Sales MJA (2007) Polystyrene/thermoplastic starch blends with different plasticizers: preparation and thermal characterization. J Therm Anal Calorim 87(3):635–638

    Article  CAS  Google Scholar 

  31. Peng Z, Ma L, Gong X (2014) Comparison of life cycle environmental impacts between natural gypsum board and FGD gypsum board. Key Eng Mater 599:15–18

    Article  CAS  Google Scholar 

  32. U.S. Geological Survey (2017) Mineral commodity summaries 2017, 1st edn. U.S. Geological Survey, Washington

    Google Scholar 

  33. Lima TM, Neves CAR (2016) Sumário mineral 2015. Departamento Nacional de Produção Mineral, Rio de Janeiro

    Google Scholar 

  34. Machado MDS (2016) Nanocompósito de poliestireno reciclado, bentonita sódica e hemi-hidrato de sulfato de cálcio: obtenção e Caracterização. Universidade de São Paulo, São Paulo

    Google Scholar 

  35. Madariaga FJG, Macia JL (2008) Mezclas de residuos de poliestireno expandido (EPS) conglomerados con yeso o escayola para su uso en la construcción. Inf Constr 60(509):35–43

    Google Scholar 

  36. Erbs A et al (2018) Properties of recycled gypsum from gypsum plasterboards and commercial gypsum throughout recycling cycles. J Clean Prod 183:1314–1322

    Article  CAS  Google Scholar 

  37. Jiménez-Rivero A, García-Navarro J (2017) Characterization of quality recycled gypsum and plasterboard with maximized recycled content. Mater Constr 67(328):137

    Article  CAS  Google Scholar 

  38. Bartolomei SS, Wiebeck H (2019) Characterization of gypsum waste from civil construction to obtain polymer composites. Mater Sci Forum 958 MSF(1):47–51

    Article  Google Scholar 

  39. Kruis AJ et al (2017) Ethyl acetate production by the elusive alcohol acetyltransferase from yeast. Metab Eng 41:92–101

    Article  CAS  PubMed  Google Scholar 

  40. Gutiérrez TJ, Alvarez VA (2017) Properties of native and oxidized corn starch/polystyrene blends under conditions of reactive extrusion using zinc octanoate as a catalyst. React Funct Polym 112:33–44

    Article  CAS  Google Scholar 

  41. Murariu M et al (2008) Polylactide (PLA)-CaSO4 composites toughened with low molecular weight and polymeric ester-like plasticizers and related performances. Eur Polym J 44(11):3842–3852

    Article  CAS  Google Scholar 

  42. Wei Y et al (2016) The ftir fingerprint of Gypsum fibrosum. Acta Med Mediterr 32:607–611

    Google Scholar 

  43. Zuhaimi NAS et al (2015) Reusable gypsum based catalyst for synthesis of glycerol carbonate from glycerol and urea. Appl Catal A 502:312–319

    Article  CAS  Google Scholar 

  44. Zhang K et al (2014) Mechanochemical degradation of hexabromocyclododecane and approaches for the remediation of its contaminated soil. Chemosphere 116:40–45

    Article  CAS  PubMed  Google Scholar 

  45. Jiang L et al (2019) Direct introduction of elemental sulfur into polystyrene: a new method of preparing polymeric materials with both high refractive index and Abbe number. Polymer 180:121715

    Article  CAS  Google Scholar 

  46. Lin-Vien D et al (1991) The handbook of infrared and Raman characteristic frequencies of organic molecules. Academic Press, Londres

    Google Scholar 

  47. Ani KEAL, Ramadhan AE (2015) Kinetic study of the effect of plasticization on photodegradation of polystyrene solid films. Mater Sci Appl 6:617–633

    Google Scholar 

  48. Bocqué M et al (2016) Petro-based and bio-based plasticizers: chemical structures to plasticizing properties. J Polym Sci Part A Polym Chem 54(1):11–33

    Article  CAS  Google Scholar 

  49. Moorshead TC (1962) Advances in PVC compounding and processing, 1st edn. M. Kaufman and Sons, London

    Google Scholar 

  50. Preturlan JGD et al (2020) Kinetics and mechanism of the dehydration of calcium sulfate dihydrate: a comprehensive approach for studying the dehydration of ionic hydrates under controlled temperature and water vapor pressure. J Phys Chem C 124(48):26352–26367

    Article  CAS  Google Scholar 

  51. Yim A, Chahal RS, Pierre LES (1973) The effect of polymer-filler interaction energy on the T′g of filled polymers. J Colloid Interface Sci 43(3):583–590

    Article  CAS  Google Scholar 

  52. Alekseeva OV, Noskov AV, Guseynov SS (2020) Thermal behavior of polystyrene-based composite materials. Prot Met Phys Chem Surf 56(3):469–472

    Article  CAS  Google Scholar 

  53. Ajji Z (2005) Preparation of polyester/gypsum/composite using gamma radiation, and its radiation stability. Radiat Phys Chem 73(3):183–187

    Article  CAS  Google Scholar 

  54. Firmino HCT et al (2017) Caracterização de compósitos particulados de polietileno de alta densidade/pó de concha de molusco. Rev Mater. https://doi.org/10.1590/s1517-707620170004.0213

    Article  Google Scholar 

  55. Argon AS, Cohen RE, Mower TM (1994) Mechanisms of toughening brittle polymers. Mater Sci Eng A 176(1–2):79–90

    Article  CAS  Google Scholar 

  56. Kinloch AJ, Yung RJ (1995) Glassy polymers I—thermoplastics. Fracture behaviour of polymers, 5th edn. Champman and Hall, London, pp 229–285

    Chapter  Google Scholar 

  57. Velasquez D et al (2015) Effect of crystallinity and plasticizer on mechanical properties and tissue integration of starch-based materials from two botanical origins. Carbohydr Polym 124:180–187

    Article  CAS  PubMed  Google Scholar 

  58. Plummer CJG, Donald AM (1990) Disentanglement and crazing in glassy polymers. Macromolecules 23(17):3929–3937

    Article  CAS  Google Scholar 

  59. Lee C-Y, Liu C-Y (2019) The influence of forced-air cooling on a 3D printed PLA part manufactured by fused filament fabrication. Addit Manuf 25:196–203

    CAS  Google Scholar 

  60. Bakrani Balani S et al (2019) Influence of printing parameters on the stability of deposited beads in fused filament fabrication of poly(lactic) acid. Addit Manuf 25:112–121

    CAS  Google Scholar 

  61. Soykeabkaew N, Thanomsilp C, Suwantong O (2015) A review: starch-based composite foams. Compos A Appl Sci Manuf 78:246–263

    Article  CAS  Google Scholar 

  62. Eaves D (2004) Handbook of polymer foams 1, Ed. Rapra, Shawbury

    Google Scholar 

  63. Kareem Salih W (2019) Flame retardancy properties and thermomechanical behavior of the nanocomposite of thermoplastic polypropylene/linear low-density polyethylene blend filled with nano calcium carbonate. J Phys Conf Ser 1294(5):052020

    Article  CAS  Google Scholar 

  64. Kiliaris P, Papaspyrides CD (2010) Polymer/layered silicate (clay) nanocomposites: an overview of flame retardancy. Prog Polym Sci (Oxford) 35(7):902–958

    Article  CAS  Google Scholar 

  65. Laoutid F et al (2009) New prospects in flame retardant polymer materials: from fundamentals to nanocomposites. Mater Sci Eng 63(3):100–125

    Article  CAS  Google Scholar 

  66. Leszczyńska A et al (2006) Polymer/montmorillonite nanocomposites with improved thermal properties. Thermochim Acta 453(2):75–96

    Article  CAS  Google Scholar 

  67. Morgan AB (2006) Flame retarded polymer layered silicate nanocomposites: a review of commercial and open literature systems. Polym Adv Technol 17(4):206–217

    Article  CAS  Google Scholar 

  68. Morgan AB et al (2003) Flammability of polystyrene layered silicate (clay) nanocomposites: carbonaceous char formation. Fire Mater 26(6):247–253

    Article  CAS  Google Scholar 

  69. Ning W, Jiugao Y, Xiaofei M (2008) Review new developments in flame retardancy of styrene thermoplastics and foams. Polym Int 57:431–448

    Article  CAS  Google Scholar 

  70. Fayet G, Tribouilloy B, Rotureau P (2020) Flash point of binary mixtures of chlorinated hydrocarbons with toluene and their predictability with existing mixing rule. Process Saf Prog. https://doi.org/10.1002/prs.12127

    Article  Google Scholar 

  71. Grimminger J, Muha K (1995) Silicone surfactants for pentane blown rigid foam. J Cell Plast 31(1):48–72

    Article  Google Scholar 

  72. Rahmanian I, Wang YC (2012) A combined experimental and numerical method for extracting temperature-dependent thermal conductivity of gypsum boards. Constr Build Mater 26(1):707–722

    Article  Google Scholar 

  73. Kolaitis DI, Founti MA (2013) Development of a solid reaction kinetics gypsum dehydration model appropriate for CFD simulation of gypsum plasterboard wall assemblies exposed to fire. Fire Saf J 58:151–159

    Article  CAS  Google Scholar 

  74. Bryner NP, Mulholland GW (1991) Smoke emission and burning rates for urban structures. Atmos Environ A 25(11):2553–2562

    Article  Google Scholar 

Download references

Acknowledgements

To professors Maria Cristina Vidal Borba from USP and Ricardo José Orsi de Sanctis from Fatec Sorocaba for the reviews.

Funding

This work was supported by FAPESP (Process Number 2019/00862-9), CAPES, and CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suellen Signer Bartolomei.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bartolomei, S.S., da Silva, F.L.F., de Moura, E.A.B. et al. Recycling Expanded Polystyrene with a Biodegradable Solvent to Manufacture 3D Printed Prototypes and Finishing Materials for Construction. J Polym Environ 30, 3701–3717 (2022). https://doi.org/10.1007/s10924-022-02465-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-022-02465-7

Keywords

Navigation