Skip to main content
Log in

Aligned-graphene composites: a review

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Graphene and its derivatives (G) are promising nanofillers with the ability to boost versatile properties of composites despite the low addition due to their combined excellent performances. Moreover, aligning G into various matrices can achieve stronger improvement in properties compared to composites with randomly distributed G. Aligning G is an effective strategy to take full advantage of its properties. In the present work, the state-of-the-art progress in preparations and resulted properties of aligned-graphene (and aligned-graphene derivatives) composites (AGCs) is comprehensively reviewed. The mechanisms of various preparation methods are presented, such as liquid crystal method, vacuum filtration method, and combinations of vacuum filtration and spark plasma sintering method, for both polymer-based and metal-based AGCs. Furthermore, the relevant influencing factors in procedures are analyzed. In addition, influences of aligned-graphene (and aligned-graphene derivatives) on the resulting electric, thermal, and mechanical properties have been discussed and the reasons why AGCs possessed better properties have been summarized. Current challenges associated with AGCs and the pathways toward future progress in AGCs are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

(see Ref. [17])

Figure 2
Figure 3

(see Ref. [29])

Figure 4

(in Ref. [38])

Figure 5

(see Refs. [44] and [46], respectively)

Figure 6

(see Refs. [54] and [59], respectively)

Figure 7

(see Ref. [87])

Figure 8
Figure 9

(Refs. [107] and [100], respectively)

Figure 10

(Ref. [118])

Figure 11

(Ref. [21])

Figure 12

(Ref. [142])

Figure 13

Similar content being viewed by others

Abbreviations

G:

Graphene and its derivatives

GO:

Graphene oxide

FLG:

Functional graphene

CNTs:

Carbon nanotubes

TTD:

Through-thickness direction of graphene (graphene derivatives)

EMI:

Electromagnetic interference

LC:

Liquid crystal method

LBL:

Layer-by-layer self-assemble method

UFC:

Unidirectional freeze-casting method

VFSPS:

Vacuum filtration and spark plasma sintering method

GAD:

Graphene (graphene derivative) aqueous dispersions

AG:

Aligned-graphene (aligned-graphene derivatives)

TEM:

Transmission electron microscope

EP:

Epoxy

PAA:

Poly(amic acid)

EMF:

Exerting magnetic field method

G-Fe3O4 :

Fe3O4 anchored graphene (graphene derivatives)

DC:

Direct current

1D:

One dimensional

G-diamine:

Diamine-modified graphene

PDDA:

Poly(diallyldiamine chloride)

AGLCs:

Aligned-graphene (aligned-graphene derivative) laminated composites

CTAB:

Hexadecyl trimethyl ammonium bromide

SLS:

Sodium lignosulfonate

GA:

Graphene (graphene derivative) aerogel

FETs:

Field effect transistors

SPS:

Spark plasma sintering

CVDS:

Growing graphene by chemical vapor deposition onto surface of metals and sintering the graphene/metals sheets

α :

Specific area

RG:

Random-graphene (random-graphene derivatives)

PAMPs:

Poly(2-acrylamido-2-methyl-1-propanesulfonic acid)

KH550-G:

KH550-modified graphene

PI:

Polyimide

PEM/PSS/PAH:

Polyelectrolyte/poly(sodium 4-styrenesulfonate)/poly(allylamine hydrochloride)

PS-GO:

Polystyrene-grafted graphene oxide

SSBR-BR:

Solution styrene butadiene/butadiene rubber

λ :

Thermal conductivity

EIS:

Electrochemical impedance spectroscopy

CA:

Cellulose acetate

2D:

Two dimensional

rGO:

Reduced graphene oxide

TIM:

Thermal interface materials

IPD:

In-plane direction of graphene (graphene derivatives)

AGCs:

Aligned-graphene (aligned-graphene derivative) composites

RGCs:

Random-graphene (random-graphene derivative) composites

VF:

Vacuum filtration method

SEI:

Solvent evaporation induction method

RPS:

Replication of the ordered porous structure method

LMPG:

Liquid mixtures of polymers and graphene (graphene derivatives)

PTFE:

Polytetrafluoroethylene

SEM:

Scanning electron microscope

GCA:

Graphene carboxylic acid

PU:

Polyurethane

PVDF-HFP:

Poly(vinylidene fluoride-co-hexafluoropropylene)

EEF:

Exerting electric field method

3D:

Three dimensional

AC:

Alternating current

PVA:

Poly vinyl alcohol

MG:

Multilayer G

PSS:

Poly(styrene sulfonate)

MGACs:

Monolithic aligned-graphene (aligned-graphene derivative) composites

SDS:

Sodium dodecyl sulfate

PET:

Polybutylene terephthalate

SBR:

Styrene butadiene rubber

PECVD:

Plasma-enhanced chemical vapor deposition

CVD:

Chemical vapor deposition

Pc:

Percolation threshold value

rGO-Fe3O4 :

Fe3O4 anchored reduced graphene oxide

UHMWPE:

Ultra-high molecular weight polyethylene

PEEK:

Poly(ether ether ketone)

PEDOT:

Poly(3,4-ethylene dioxythipphene)

PSI-GO:

Poly(styrene-co-isoprene)-grafted graphene oxide

BTESPT:

Bis(triethoxysilylpropyl)tetrasulfide

VTMS-GO:

Vinyl tri-methoxysilane grated graphene oxide

FGS:

Fluorinated graphene

σ :

Electronic conductivity

References

  1. Novoselov KS, Fal′Ko VI, Colombo L, Gellert PR, Schwab MG, Kim K (2012) A roadmap for graphene. Nature 490:192–200

    CAS  Google Scholar 

  2. Kaur K, Jeet K (2017) Electrical conductivity of water-based nanofluids prepared with graphene-carbon nanotube hybrid. Fuller Nanotub Carbon Nanostruct 25:726–734

    CAS  Google Scholar 

  3. Lee Y, Bae S, Jang H et al (2010) Wafer-scale synthesis and transfer of graphene films. Nano Lett 10:490–493

    CAS  Google Scholar 

  4. Nika DL, Balandin AA (2012) Two-dimensional phonon transport in graphene. J Phys Condens Matter 24:233203

    Google Scholar 

  5. Nika DL, Balandin AA (2017) Phonons and thermal transport in graphene and graphene-based materials. Rep Prog Phys 80:036502

    Google Scholar 

  6. Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35:1350–1375

    CAS  Google Scholar 

  7. Zhan Y, Wu J, Xia H, Yan N, Fei G, Yuan G (2011) Dispersion and exfoliation of graphene in rubber by an ultrasonically-assisted latex mixing and in situ reduction process. Macromol Mater Eng 296:590–602

    CAS  Google Scholar 

  8. Mao Y, Wen S, Chen Y et al (2013) High performance graphene oxide based rubber composites. Sci Rep 3:2508

    Google Scholar 

  9. Liang J, Wang Y, Huang Y et al (2009) Electromagnetic interference shielding of graphene/epoxy composites. Carbon 47:922–925

    CAS  Google Scholar 

  10. Jafari Y, Ghoreishi SM, Shabani-Nooshabadi M (2016) Polyaniline/graphene nanocomposite coatings on copper: electropolymerization, characterization, and evaluation of corrosion protection performance. Synth Met 217:220–230

    CAS  Google Scholar 

  11. Fan D, Zhang R, Wang X, Huang S, Peng H (2012) Influence of silver dopant on the morphology and ultraviolet emission in aligned zno nanostructures. Phy Status Solidi A 209:335–339

    CAS  Google Scholar 

  12. Huard M, Roussel F, Rouzière S, Patel S, Pinault M, Mayne LM, Launois P (2014) Vertically aligned carbon nanotube-based composite: elaboration and monitoring of the nanotubes alignment. J Appl Polym Sci 131:1–15

    Google Scholar 

  13. Nain AS, Wang J (2013) Polymeric nanofibers: isodiametric design space and methodology for depositing aligned nanofiber arrays in single and multiple layers. Polym J 45:695–700

    CAS  Google Scholar 

  14. Xia X, Hao J, Wang Y, Zhong Z, Weng GJ (2017) Theory of electrical conductivity and dielectric permittivity of highly aligned graphene-based nanocomposites. J Phys Condens Matter 29:205702

    Google Scholar 

  15. Shivanandareddy AB, Krishnamurthy S, Lakshminarayanan V, Kumar S (2013) Mutually ordered self-assembly of discotic liquid crystal-graphene nanocomposites. Chem Commun 50:710–712

    Google Scholar 

  16. Eppenga R, Frenkel D (1984) Monte carlo study of the isotropic and nematic phases of infinitely thin hard platelets. Mol Phys 52:1303–1334

    CAS  Google Scholar 

  17. Aboutalebi SH, Gudarzi MM, Zheng QB, Kim JK (2011) Spontaneous formation of liquid crystals in ultralarge graphene oxide dispersions. Adv Funct Mater 21:2978–2988

    CAS  Google Scholar 

  18. Yousefi N, Lin X, Zheng Q et al (2013) Simultaneous in situ reduction, self-alignment and covalent bonding in graphene oxide/epoxy composites. Carbon 59:406–417

    CAS  Google Scholar 

  19. Pan Y, Wu T, Bao H, Li L (2011) Green fabrication of chitosan films reinforced with parallel aligned graphene oxide. Carbohyd Polym 83:1908–1915

    CAS  Google Scholar 

  20. Yousefi N, Gudarzi MM, Zheng Q et al (2013) Highly aligned, ultralarge-size reduced graphene oxide/polyurethane nanocomposites: mechanical properties and moisture permeability. Compos Part A Appl S 49:42–50

    CAS  Google Scholar 

  21. Li Y, Yang Z, Qiu H, Dai Y, Zheng Q, Li J, Yang JH (2014) Self-aligned graphene as anticorrosive barrier in waterborne polyurethane composite coatings. J Mat Chem A 2:14139–14145

    CAS  Google Scholar 

  22. Gudarzi MM, Aboutalebi SH, Yousefi N, et al (2011) Self-aligned graphene sheets-polyurethane nanocomposites. In: Mrs online proceedings library archive, p 1344

  23. Yousefi N, Gudarzi MM, Zheng Q, Aboutalebi SH, Sharif F, Kim JK (2012) Self-alignment and high electrical conductivity of ultralarge graphene oxide–polyurethane nanocomposites. J Mater Chem 22:12709–12717

    CAS  Google Scholar 

  24. Kim GY, Choi MC, Lee D, Ha CS (2012) 2D-aligned graphene sheets in transparent polyimide/graphene nanocomposite films based on noncovalent interactions between poly(amic acid) and graphene carboxylic acid. Macromol Mater Eng 297:303–311

    CAS  Google Scholar 

  25. Kumar P, Yu S, Shahzad F, Hong SM, Kim YH, Chong MK (2016) Ultrahigh electrically and thermally conductive self-aligned graphene/polymer composites using large-area reduced graphene oxides. Carbon 101:120–128

    CAS  Google Scholar 

  26. Behabtu N, Lomeda JR, Green MJ et al (2010) Spontaneous high-concentration dispersions and liquid crystals of graphene. Nat Nanotechnol 5:406–411

    CAS  Google Scholar 

  27. Ominato Y, Koshino M (2013) Orbital magnetism of graphene flakes. Phys Rev B 87:269–275

    Google Scholar 

  28. Tian B, Lin W, Zhuang P, Li J, Shih TM, Cai W (2018) Magnetically-induced alignment of graphene via landau diamagnetism. Carbon 131:66–71

    CAS  Google Scholar 

  29. Li D, Liu Y, Ma H, Wang Y, Wang L, Xie Z (2015) Preparation and properties of aligned graphene composites. RSC Adv 5:31670–31676

    CAS  Google Scholar 

  30. Babaei H, Keblinski P, Khodadadi JM (2013) Thermal conductivity enhancement of paraffins by increasing the alignment of molecules through adding CNT/graphene. Int J Heat Mass Transf 58:209–216

    CAS  Google Scholar 

  31. Babonneau D, Camelio S, Simonot L, Pailloux F, Guérin P, Lamongie B, Lyon O (2011) Tunable plasmonic dichroism of au nanoparticles self-aligned on rippled Al2O3 thin films. EPL 93:26005

    Google Scholar 

  32. Liu C, Yan H, Chen Z, Yuan L, Liu T (2015) Enhanced tribological properties of bismaleimides filled with aligned graphene nanosheets coated with Fe3O4 nanorods. J Mater Chem A 3:10559–10565

    CAS  Google Scholar 

  33. Yan H, Tang Y, Long W, Li Y (2014) Enhanced thermal conductivity in polymer composites with aligned graphene nanosheets. J Mater Sci 49:5256–5264. https://doi.org/10.1007/s10853-014-8198-z

    Article  CAS  Google Scholar 

  34. Renteria J, Legedza S, Salgado R et al (2015) Magnetically-functionalized self-aligning graphene fillers for high-efficiency thermal management applications. Mater Des 88:214–221

    CAS  Google Scholar 

  35. Liang J, Xu Y, Sui D et al (2010) Flexible, magnetic, and electrically conductive graphene/fe3o4 paper and its application for magnetic-controlled switches. J Phys Chem C 114:17465–17471

    CAS  Google Scholar 

  36. Ferrand HL, Bolisetty S, Demirörs AF, Libanori R, Studart AR, Mezzenga R (2016) Magnetic assembly of transparent and conducting graphene-based functional composites. Nat Commun 7:12078

    Google Scholar 

  37. Yan H, Wang R, Li Y, Long W (2015) Thermal conductivity of magnetically aligned graphene–polymer composites with fe3o4 -decorated graphene nanosheets. J Electron Mater 44:658–666

    CAS  Google Scholar 

  38. Erb RM, Segmehl J, Charilaou M, Löffler JF, Studart AR (2012) Non-linear alignment dynamics in suspensions of platelets under rotating magnetic fields. Soft Matter 8(29):7604–7609

    CAS  Google Scholar 

  39. Billaud J, Bouville F, Magrini T, Villevieille C, Studart AR (2016) Magnetically aligned graphite electrodes for high-rate performance Li-ion batteries. Nat Energy 1:16097

    CAS  Google Scholar 

  40. Castellano RJ, Akin C, Giraldo G, Kim S, Fornasiero F, Shan JW (2015) Electrokinetics of scalable, electric-field-assisted fabrication of vertically aligned carbon-nanotube/polymer composites. J Appl Phys 117:1942–1945

    Google Scholar 

  41. Wu S, Ladani RB, Zhang J et al (2015) Aligning multilayer graphene flakes with an external electric field to improve multifunctional properties of epoxy nanocomposites. Carbon 94:607–618

    CAS  Google Scholar 

  42. Wang Z (2009) Alignment of graphene nanoribbons by an electric field. Carbon 47:3050–3053

    CAS  Google Scholar 

  43. Pang H, Chen C, Zhang YC, Ren PG, Yan DX, Li ZM (2011) The effect of electric field, annealing temperature and filler loading on the percolation threshold of polystyrene containing carbon nanotubes and graphene nanosheets. Carbon 49:1980–1988

    CAS  Google Scholar 

  44. Li Q, Guo Y, Li W et al (2012) Ultrahigh thermal conductivity of assembled aligned multilayer graphene/epoxy composite. Chem Mate 26:4459–4465

    Google Scholar 

  45. Koo B, Goli P, Sumant AV, Claro PCDS, Rajh T, Johnson CS, Balandin AA, Shevchenko EV (2014) Toward lithium ion batteries with enhanced thermal conductivity. ACS Nano 8:7202–7207

    CAS  Google Scholar 

  46. Liang Q, Yao X, Wang W, Liu Y, Wong CP (2011) A three-dimensional vertically aligned functionalized multilayer graphene architecture: an approach for graphene-based thermal interfacial materials. ACS Nano 5:2392–2401

    CAS  Google Scholar 

  47. Xia S, Ni M, Zhu T, Zhao Y, Li N (2015) Ultrathin graphene oxide nanosheet membranes with various d-spacing assembled using the pressure-assisted filtration method for removing natural organic matter. Desalination 371:78–87

    CAS  Google Scholar 

  48. Liu W, Song N, Wu Y, Gai Y, Zhao Y (2017) Preparation of layer-aligned graphene composite film with enhanced thermal conductivity. Vacuum 138:39–47

    CAS  Google Scholar 

  49. Song N, Jiao D, Ding P, Cui S, Tang S, Shi LY (2015) Anisotropic thermally conductive flexible films based on nanofibrillated cellulose and aligned graphene nanosheets. J Mater Chem C 4:305–314

    Google Scholar 

  50. Lin X, Shen X, Zheng Q, Yousefi N, Ye L, Mai YW, Kim JK (2012) Fabrication of highly-aligned, conductive, and strong graphene papers using ultralarge graphene oxide sheets. ACS Nano 6:10708–10719

    CAS  Google Scholar 

  51. Park S, Mohanty N, Suk JW et al (2010) Biocompatible, robust free-standing paper composed of a tween/graphene composite. Adv Mater 22:1736–1740

    CAS  Google Scholar 

  52. Zhang YF, Ren YJ, Bai SL (2018) Vertically aligned graphene film/epoxy composites as heat dissipating materials. Int J Heat Mass Tran 118(18):510–517

    CAS  Google Scholar 

  53. Zhang J, Xu X, Yao C, Li L (2016) Facile fabrication of an organic semiconductor/graphene microribbon heterojunction by self-assembly. RSC Adv 6:52878–52883

    CAS  Google Scholar 

  54. Zhao L, Zhang H, Kim NH et al (2016) Preparation of graphene oxide/polyethyleneimine layer-by-layer assembled film for enhanced hydrogen barrier property. Compos Part B Eng 92:252–258

    Google Scholar 

  55. Zhang B, Cui T (2011) An ultrasensitive and low-cost graphene sensor based on layer-by-layer nano self-assembly. Appl Phys Lett 98:073116

    Google Scholar 

  56. Hong JY, Shin KY, Kwon OS, Kang H, Jang J (2011) A strategy for fabricating single layer graphene sheets based on a layer-by-layer self-assembly. Chem Commun 47:7182–7184

    CAS  Google Scholar 

  57. Pu J, Mo Y, Wan S, Wang L (2013) Fabrication of novel graphene-fullerene hybrid lubricating films based on self-assembly for mems applications. Chem Commun 50:469–471

    Google Scholar 

  58. Tang J, Yang J, Zhou L, Xie J, Chen G, Zhou X (2014) Layer-by-layer self-assembly of a sandwich-like graphene wrapped snox@graphene composite as an anode material for lithium ion batteries. J Mater Chem A 2:6292–6295

    CAS  Google Scholar 

  59. Zhao X, Zhang Q, Hao Y, Li Y, Fang Y, Chen D (2010) Alternate multilayer films of poly(vinyl alcohol) and exfoliated graphene oxide fabricated via a facial layer-by-layer assembly. Macromolecules 43:9411–9416

    CAS  Google Scholar 

  60. Zhang D, Tong J, Xia B (2014) Humidity-sensing properties of chemically reduced graphene oxide/polymer nanocomposite film sensor based on layer-by-layer nano self-assembly. Sens Actuator B Chem 197:66–72

    CAS  Google Scholar 

  61. Kirschner J, Wang Z, Eigler S, Steinrück HP, Jäger CM, Clark T, Hirsch A, Halik M (2014) Driving forces for the self-assembly of graphene oxide on organic monolayers. Nanoscale 6:11344–11350

    CAS  Google Scholar 

  62. Li Y, Yang J, Zhou Y, Zhao N, Zeng W, Wang W (2016) Fabrication of gold nanoparticles/graphene oxide films with surface-enhanced raman scattering activity by a simple electrostatic self-assembly method. Colloid Surf A 512:93–100

    Google Scholar 

  63. Zhang D, Liu J, Xia B (2016) Layer-by-layer self-assembly of zinc oxide/graphene oxide hybrid toward ultrasensitive humidity sensing. IEEE Electron Device Lett 37:916–919

    CAS  Google Scholar 

  64. Chettri P, Vendamani VS, Tripathi A, Pathak AP, Tiwari A (2016) Self-assembly of functionalised graphene nanostructures by one step reduction of graphene oxide using aqueous extract of artemisia vulgaris. Appl Surf Sci 362:221–229

    CAS  Google Scholar 

  65. Yu S, Li N, Higgins D et al (2014) Self-assembled reduced graphene oxide/polyacrylamide conductive composite films. ACS Appl Mater Interfaces 6:19783

    CAS  Google Scholar 

  66. Yao Y, Ma W (2014) Self-assembly of polyelectrolytic/graphene oxide multilayer thin films on quartz crystal microbalance for humidity detection. IEEE Sens J 14:4078–4084

    CAS  Google Scholar 

  67. Lee KH, Hong JH, Kwak SJ, Min P, Son JG (2015) Spin self-assembly of highly ordered multilayers of graphene-oxide sheets for improving oxygen barrier performance of polyolefin films. Carbon 83:40–47

    CAS  Google Scholar 

  68. Tang L, Li X, Du D, He C (2012) Fabrication of multilayer films from regenerated cellulose and graphene oxide through layer-by-layer assembly. Prog Nat Sci 22:341–346

    Google Scholar 

  69. Zhang D, Tong J, Xia B, Xue Q (2014) Ultrahigh performance humidity sensor based on layer-by-layer self-assembly of graphene oxide/polyelectrolyte nanocomposite film. Sens Actuator B Chem 203:263–270

    CAS  Google Scholar 

  70. Qi W, Xue Z, Yuan W, Wang H (2013) Layer-by-layer assembled graphene oxide composite films for enhanced mechanical properties and fibroblast cell affinity. Mater Chem B 2:325–331

    Google Scholar 

  71. Yang L, Niu T, Zhang H, Xu W, Zou M, Xu L et al (2017) Self-assembly of suspended graphene wrinkles with high pre-tension and elastic property. 2D Mater 4:041001

    Google Scholar 

  72. Peng L, Xu Z, Liu Z, Guo Y, Li P, Gao C (2017) Ultrahigh thermal conductive yet superflexible graphene films. Adv Mater 29:1700589

    Google Scholar 

  73. Zhang M, Wang Y, Huang L, Xu Z, Li C, Shi G (2015) Multifunctional pristine chemically modified graphene films as strong as stainless steel. Adv Mater 27:6708

    CAS  Google Scholar 

  74. Ye X, Zhu Y, Tang Z, Wan Z, Jia C (2017) In-situ chemical reduction produced graphene paper for flexible supercapacitors with impressive capacitive performance. J Power Sources 360:48–58

    CAS  Google Scholar 

  75. Bae S, Kim H, Lee Y et al (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 5:574–578

    CAS  Google Scholar 

  76. Schwierz F (2010) Graphene for electronic applications: transistors and more. In: Bipolar/bicmos circuits and technology meeting. IEEE. https://doi.org/10.1109/bipol.2010.5668069

  77. Malekpour H, Chang KH, Chen JC, Lu CY, Nika DL, Novoselov KS, Balandin AA (2014) Thermal conductivity of graphene laminate. Nano Lett 14:5155–5161

    CAS  Google Scholar 

  78. Lv W, Xia Z, Wu S et al (2011) Conductive graphene-based macroscopic membrane self-assembled at a liquid–air interface. J Mater Chem 21:3359–3364

    CAS  Google Scholar 

  79. Kim T, Kim H, Kwon SW et al (2012) Large-scale graphene micropatterns via self-assembly-mediated process for flexible device application. Nano Lett 12:743–748

    CAS  Google Scholar 

  80. Wang F, Mao J (2018) The self-aligning behaviour of graphene nanosheets in the styrene butadiene rubber by controlling curing temperature. Fuller Nanotub Carbon Nanostruct 26:61–68

    CAS  Google Scholar 

  81. Fan P, Wang L, Yang J, Chen F, Zhong M (2012) Graphene/poly(vinylidene fluoride) composites with high dielectric constant and low percolation threshold. Nanotechnology 23:365702

    Google Scholar 

  82. Sun H, Xu Z, Gao C (2013) Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels. Adv Mater 25:2554–2560

    CAS  Google Scholar 

  83. Bai H, Li C, Wang X, Shi G (2011) On the gelation of graphene oxide. J Phys Chem C 115:5545–5551

    CAS  Google Scholar 

  84. Estevez L, Kelarakis A, Gong Q, Da’as EH, Giannelis EP (2011) Multifunctional graphene/platinum/nafion hybrids via ice templating. J Am Chem Soc 133:6122–6125

    CAS  Google Scholar 

  85. Deville S (2010) Freeze-casting of porous ceramics: a review of current achievements and issues. Adv Eng Mater 10:155–169

    Google Scholar 

  86. Li WL, Lu K, Walz JY (2012) Freeze casting of porous materials: review of critical factors in microstructure evolution. Int Mater Rev 57:37–60

    CAS  Google Scholar 

  87. Qiu L, Liu JZ, Chang SL, Wu Y, Li D (2012) Biomimetic superelastic graphene-based cellular monoliths. Nat Commun 3:1241

    Google Scholar 

  88. Xu Z, Zhang Y, Li P, Gao C (2012) Strong, conductive, lightweight, neat graphene aerogel fibers with aligned pores. ACS Nano 6:7103–7113

    CAS  Google Scholar 

  89. Wang Z, Shen X, Han NM, Liu X, Wu Y, Ye W, Kim JK (2016) Ultralow electrical percolation in graphene aerogel/epoxy composites. Chem Mater 28:6731–6741

    CAS  Google Scholar 

  90. Li XH, Li X, Liao KN, Min P, Liu T, Dasari A, Yu ZZ (2016) Thermally annealed anisotropic graphene aerogels and their electrically conductive epoxy composites with excellent electromagnetic interference shielding efficiencies. ACS Appl Mater Interfaces 8:33230–33239

    CAS  Google Scholar 

  91. Vickery JL, Patil AJ, Mann S (2010) Fabrication of graphene–polymer nanocomposites with higher-order three-dimensional architectures. Adv Mater 21:2180–2184

    Google Scholar 

  92. Wang Z, Han NM, Wu Y, Liu X, Shen X, Zheng Q, Kim JK (2017) Ultrahigh dielectric constant and low loss of highly-aligned graphene aerogel/poly(vinyl alcohol) composites with insulating barriers. Carbon 123:385–394

    CAS  Google Scholar 

  93. Zhou X, Yin YX, Cao AM, Wan LJ, Guo YG (2012) Efficient 3d conducting networks built by graphene sheets and carbon nanoparticles for high-performance silicon anode. ACS Appl Mater Inter 4:2824–2828

    CAS  Google Scholar 

  94. Zhang Z, Lee CS, Zhang W (2017) Vertically aligned graphene nanosheet arrays: synthesis, properties and applications in electrochemical energy conversion and storage. Adv Energy Mater 7:1700678

    Google Scholar 

  95. Xiong DB, Cao M, Guo Q, Tan Z, Fan G, Li Z, Zhang D (2015) Graphene-and-copper artificial nacre fabricated by a preform impregnation process: bioinspired strategy for strengthening-toughening of metal matrix composite. ACS Nano 9:6934–6943

    CAS  Google Scholar 

  96. Chu C, Wang XH, Wang F et al (2018) Largely enhanced thermal conductivity of graphene/copper composites with highly aligned graphene network. Carbon 127:102–112

    CAS  Google Scholar 

  97. Chu K, Wang F, Wang XH, Huang DJ (2018) Anisotropic mechanical properties of graphene/copper composites with aligned graphene. Mater Sci Eng A 713:269–277

    CAS  Google Scholar 

  98. Chu K, Wang XH, Li YB et al (2018) Thermal properties of graphene/metal composites with aligned graphene. Mater Des 140:85–94

    CAS  Google Scholar 

  99. Cao M, Xiong DB, Tan Z et al (2017) Aligning graphene in bulk copper: nacre-inspired nanolaminated architecture coupled with in-situ processing for enhanced mechanical properties and high electrical conductivity. Carbon 117:65–74

    CAS  Google Scholar 

  100. Kim Y, Lee J, Yeom MS et al (2013) Strengthening effect of single-atomic-layer graphene in metal-graphene nanolayered composites. Nat Commun 4:2114

    Google Scholar 

  101. Kumar P, Shahzad F, Yu S, Hong SM, Kim YH, Chong MK (2015) Large-area reduced graphene oxide thin film with excellent thermal conductivity and electromagnetic interference shielding effectiveness. Carbon 94:494–500

    CAS  Google Scholar 

  102. Alsaleh MH (2016) Electrical and electromagnetic interference shielding characteristics of gnp/uhmwpe composites. J Phys D Appl Phys 49:195302

    Google Scholar 

  103. Kim H, Miura Y, Macosko CW (2010) Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chem Mater 22:3441–3450

    CAS  Google Scholar 

  104. Yang L, Zhang S, Zheng C, Guo Y, Luan J, Zhi G, Wang G (2014) Design and preparation of graphene/poly(ether ether ketone) composites with excellent electrical conductivity. J Mater Sci 49:2372–2382. https://doi.org/10.1007/s10853-013-7940-2

    Article  CAS  Google Scholar 

  105. Ding JN, Fan Y, Zhao CX, Liu YB, Yu CT, Yuan NY (2012) Electrical conductivity of waterborne polyurethane/graphene composites prepared by solution mixing. J Compos Mater 46:747–752

    CAS  Google Scholar 

  106. Shah R, Kausar A, Muhammad B, Shah S (2015) Progression from graphene and graphene oxide to high performance polymer-based nanocomposite: a review. Polym Plast Technol Eng 54:173–183

    CAS  Google Scholar 

  107. Huang T, Lu R, Su C et al (2012) Chemically modified graphene/polyimide composite films based on utilization of covalent bonding and oriented distribution. ACS Appl Mater Interfaces 4:2699–2708

    CAS  Google Scholar 

  108. Gao J, Itkis ME, Yu A, Bekyarova E, Zhao B, Haddon RC (2005) Continuous spinning of a single-walled carbon nanotube-nylon composite fiber. J Am Chem Soc 127:3847–3854

    CAS  Google Scholar 

  109. Huang HD, Ren PG, Chen J, Zhang WQ, Ji X, Li ZM (2012) High barrier graphene oxide nanosheet/poly(vinyl alcohol) nanocomposite films. J Membr Sci 409–410:156–163

    Google Scholar 

  110. Tung VC, Kim J, Cote LJ, Huang JX (2011) Sticky interconnect for solution-processed tandem solar cells. J Am Chem Soc 133(24):9262–9265

    CAS  Google Scholar 

  111. Chen F, Ying J, Wang Y, Du S, Liu Z, Huang Q (2016) Effects of graphene content on the microstructure and properties of copper matrix composites. Carbon 96:836–842

    CAS  Google Scholar 

  112. Liu P, Zhang X, Jia H, Yin Q, Wang J, Yin B, Xu D (2017) High mechanical properties, thermal conductivity and solvent resistance in graphene oxide/styrene-butadiene rubber nanocomposites by engineering carboxylated acrylonitrile-butadiene rubber. Compos Part B Eng 130:257–266

    CAS  Google Scholar 

  113. Höltker G (2013) Enhanced mechanical and gas barrier properties of rubber nanocomposites with surface functionalized graphene oxide at low content. Polymer 54:1930–1937

    Google Scholar 

  114. Xing W, Wu J, Huang G, Li H, Tang M, Fu X (2014) Enhanced mechanical properties of graphene/natural rubber nanocomposites at low content. Polym Int 63(9):1674–1681

    CAS  Google Scholar 

  115. Uddin ME, Layek RK, Kim HY, Kim NH, Hui D, Lee JH (2016) Preparation and enhanced mechanical properties of non-covalently-functionalized graphene oxide/cellulose acetate nanocomposites. Compos Part B Eng 90:223–231

    CAS  Google Scholar 

  116. Wu Y, Chen L, Li J, Zhou H, Zhao H, Chen J (2017) Understanding the mechanical and tribological properties of solution styrene butadiene rubber composites based on partially graphene oxide. Eur Polym J 89:150–161

    CAS  Google Scholar 

  117. Gao X, Yue H, Guo E, Zhang H, Lin X, Yao L, Wang B (2016) Mechanical properties and thermal conductivity of graphene reinforced copper matrix composites. Powder Technol 301:601–607

    CAS  Google Scholar 

  118. Li A, Zhang C, Zhang YF, Li A, Zhang C, Zhang YF (2017) Thermal conductivity of graphene-polymer composites: mechanisms, properties, and applications. Polymers 9:437

    Google Scholar 

  119. Balandin AA (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10:569

    CAS  Google Scholar 

  120. Shahil KMF, Balandin AA (2012) Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials. Nano Lett 12:861–867

    CAS  Google Scholar 

  121. Goyal V, Balandin AA (2012) Thermal properties of the hybrid graphene-metal nano-micro-composites: applications in thermal interface materials. Appl Phys Lett 100:073113

    Google Scholar 

  122. Saadah M, Hernandez E, Balandin AA (2017) Thermal management of concentrated multi-junction solar cells with graphene-enhanced thermal interface materials. Appl Sci 7:589

    Google Scholar 

  123. Renteria JD, Ramirez S, Malekpour H, Alonso B, Centeno A, Zurutuza A, Cocemasov AI, Nika DL, Balandin AA (2015) Strongly anisotropic thermal conductivity of free-standing reduced graphene oxide films annealed at high temperature. Adv Funct Mater 25:4664–4672

    CAS  Google Scholar 

  124. Ma WS, Li J, Zhao XS (2013) Improving the thermal and mechanical properties of silicone polymer by incorporating functionalized graphene oxide. J Mater Sci 48:5287–5294. https://doi.org/10.1007/s10853-013-7320-y

    Article  CAS  Google Scholar 

  125. Chatterjee S, Wang JW, Kuo WS et al (2012) Mechanical reinforcement and thermal conductivity in expanded graphene nanoplatelets reinforced epoxy composites. Chem Phys Lett 531:6–10

    CAS  Google Scholar 

  126. Aradhana R, Mohanty S, Nayak SK (2018) Comparison of mechanical, electrical and thermal properties in graphene oxide and reduced graphene oxide filled epoxy nanocomposite adhesives. Polymer 141:109–123

    CAS  Google Scholar 

  127. Yang B, Shi Y, Miao JB, Xia R, Su LF, Qian JS, Chen P, Zhang QL, Liu JW (2018) Evaluation of rheological and thermal properties of polyvinylidene fluoride (PVDF)/graphene nanoplatelets (GNP) composites. Polym Test 67:122–135

    CAS  Google Scholar 

  128. Zhang W, Zuo H, Zhang X, Wang J, Guo L, Peng X (2018) Preparation of graphene-perfluoroalkoxy composite and thermal and mechanical properties. Polymers 10:700

    Google Scholar 

  129. Huang X, Lin Y, Fang G (2018) Thermal properties of polyvinyl butyral/graphene composites as encapsulation materials for solar cells. Sol Energy 161:187–193

    CAS  Google Scholar 

  130. Guo Y, Xu G, Yang X, Ruan K, Ma T, Zhang Q, Gu J, Wu Y, Liu H, Guo Z (2018) Significantly enhanced and precisely modeled thermal conductivity in polyimide nanocomposites with chemically modified graphene via in situ polymerization and electrospinning-hot press technology. J Mater Chem C 6:3004

    CAS  Google Scholar 

  131. Saboori A, Pavese M, Badini C, Fino P (2017) A novel approach to enhance the mechanical strength and electrical and thermal conductivity of Cu-GNP nanocomposites. Metall Mater Trans A 49:1–13

    Google Scholar 

  132. Li J, Cui J, Yang J, Li Y, Qiu H, Yang J (2016) Reinforcement of graphene and its derivatives on the anticorrosive properties of waterborne polyurethane coatings. Compos Sci Tech 129:30–37

    CAS  Google Scholar 

  133. Okafor PA, Singh-Beemat J, Iroh JO (2015) Thermomechanical and corrosion inhibition properties of graphene/epoxy ester-siloxane-urea hybrid polymer nanocomposites. Prog Org Coat 88:237–244

    CAS  Google Scholar 

  134. Hikku GS, Jeyasubramanian K, Venugopal A, Ghosh R (2017) Corrosion resistance behaviour of graphene/polyvinyl alcohol nanocomposite coating for aluminium-2219 alloy. J Alloy Compd 716:259–269

    CAS  Google Scholar 

  135. Liu J, Lei H, Li S, Yu M (2015) Graphene dip coatings: an effective anticorrosion barrier on aluminum. Appl Surf Sci 327:241–245

    CAS  Google Scholar 

  136. Chang CH, Huang TC, Peng CW, Yeh TC, Lu HI, Hung WI, Weng CJ, Yang TI, Yeh JM (2012) Novel anticorrosion coatings prepared from polyaniline/graphene composites. Carbon 50:5044–5051

    CAS  Google Scholar 

  137. Mahato N, Cho MH (2016) Graphene integrated polyaniline nanostructured composite coating for protecting steels from corrosion: synthesis, characterization, and protection mechanism of the coating material in acidic environment. Constr Build Mater 115:618–633

    CAS  Google Scholar 

  138. Luo X, Zhong J, Zhou Q, Du S, Yuan S, Liu Y (2018) Cationic reduced graphene oxide as self-aligned nanofiller in the epoxy nanocomposite coating with excellent anticorrosive performance and its high antibacterial activity. ACS Appl Mater Interfaces 10:18400–18415

    CAS  Google Scholar 

  139. Liu J, Yu Q, Yu M, Li S, Zhao K, Xue B, Zu H (2018) Silane modification of titanium dioxide-decorated graphene oxidenanocomposite for enhancing anticorrosion performance of epoxy coatings on AA-2024. J Alloy Compd 744:728–739

    CAS  Google Scholar 

  140. Pourhashem S, Vaezi MR, Rashidi A, Bagherzadeh MR (2016) Exploring corrosion protection properties of solvent based epoxy-graphene oxide nanocomposite coatings on mild steel. Corros Sci 115:78–92

    Google Scholar 

  141. Li Y, Wang Q, Wang T, Pan G (2012) Preparation and tribological properties of graphene oxide/nitrile rubber nanocomposites. J Mater Sci 47:730–738. https://doi.org/10.1007/s10853-011-5846-4

    Article  CAS  Google Scholar 

  142. Wang F, Mao J (2018) Double layer aligned-graphene nanosheets/styrene-butadiene rubber composites: tribological and mechanical properties. J Appl Polym Sci. https://doi.org/10.1002/app.46939

    Article  Google Scholar 

  143. Wu Y, Chen L, Qin S, Li J, Zhou H, Chen J (2017) Functionalized graphene reinforced rubber composite: mechanical and tribological behavior study. J Appl Polym Sci 134:44970

    Google Scholar 

  144. Chen C, Qiu S, Cui M, Qin S, Yan G, Zhao H, Wang L, Xue Q (2017) Achieving high performance corrosion and wear resistant epoxy coatings via incorporation of noncovalent functionalized graphene. Carbon 114:356–366

    CAS  Google Scholar 

  145. Pang W, Ni Z, Wu JL, Zhao Y (2018) Investigation of tribological properties of graphene oxide reinforced ultrahigh molecular weight polyethylene under artificial seawater lubricating condition. Appl Surf Sci 434:273–282

    CAS  Google Scholar 

  146. Wang W, Huang C, Guo Y, Song Y, Zhang Y, Liu Y, Du W (2015) Application research progress of graphene composites in electromagnetic fields. Eng Plast Appl 43:143–146

    CAS  Google Scholar 

  147. Kang J, Kim D, Kim Y, Choi JB, Hong BH, Kim SW (2017) High-performance near-field electromagnetic wave attenuation in ultra-thin and transparent graphene films. 2D Mater 4:025003

    Google Scholar 

  148. Drakakis E, Kymakis E, Tzagkarakis G, Louloudakis D, Katharakis M, Kenanakis G, Suchea M, Tudose V, Koudoumas E (2016) A study of the electromagnetic shielding mechanisms in the GHz frequency range of graphene based composite layers. Appl Surf Sci 398:15–18

    Google Scholar 

  149. Yousefi N, Sun X, Lin X, Shen X, Jia J, Zhang B, Tang B, Chan M, Kim JK (2014) Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Adv Mater 26:5480–5487

    CAS  Google Scholar 

  150. Song WL, Cao MS, Lu MM, Yang J, Ju HF, Hou ZL, Liu J, Yuan J, Fan L (2013) Alignment of graphene sheets in wax composites for electromagnetic interference shielding improvement. Nanotechnology 24:115708

    Google Scholar 

  151. Zhang HB, Yan Q, Zheng WG, He Z, Yu ZZ (2011) Tough graphene-polymer microcellular foams for electromagnetic interference shielding. ACS Appl Mater Interfaces 3:918–924

    CAS  Google Scholar 

  152. Kim JM, Lee Y, Jang MG, Han C, Kim WN (2016) Electrical conductivity and emi shielding effectiveness of polyurethane foam-conductive filler composites. J Appl Polym Sci 134:44373

    Google Scholar 

Download references

Acknowledgement

This work was supported by Supported by Sichuan Science and Technology Program (2018GZ0459).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Mao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Wang, H. & Mao, J. Aligned-graphene composites: a review. J Mater Sci 54, 36–61 (2019). https://doi.org/10.1007/s10853-018-2849-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2849-4

Keywords

Navigation