Skip to main content
Log in

Enhanced thermal conductivity in polymer composites with aligned graphene nanosheets

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We developed highly aligned graphene nanosheets (GNSs) in epoxy composites with incorporating magnetic GNS–Fe3O4 hybrids under a magnetic field with the aim to take full advantage of the high inplane thermal conductivity of graphene. GNS–Fe3O4 hybrids were fabricated by a simple coprecipitation method, and their morphology, chemistry, and structure were characterized. GNS–Fe3O4 hybrids were found to be homogenously dispersed and well aligned through the direction of the magnetic field in the epoxy matrix, as confirmed by SEM observation and Raman spectra analysis. The resulting epoxy/GNS–Fe3O4 composites possessed high thermal conductivity in a parallel magnetic-alignment direction at low GNS–Fe3O4 loadings, which greatly outperformed the composites with randomly dispersed bare GNSs. The obtained results indicated that the magnetic alignment of magnetic-functionalized GNSs is an effective way for greatly improving the thermal conductivity of the graphene-based composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Balandin AA (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10:569–581

    Article  Google Scholar 

  2. Chung D (2001) Thermal interface materials. J Mater Eng Perform 10:56–59

    Article  Google Scholar 

  3. Novoselov K, Geim A, Morozov S, Jiang D, Zhang Y, Dubonos S et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  Google Scholar 

  4. Shahil KM, Balandin AA (2012) Thermal properties of graphene and multilayer graphene: applications in thermal interface materials. Solid State Commun 152:1331–1340

    Article  Google Scholar 

  5. Gulotty R, Castellino M, Jagdale P, Tagliaferro A, Balandin AA (2013) Effects of functionalization on thermal properties of single-wall and multi-wall carbon nanotube-polymer nanocomposites. ACS Nano 7:5114–5121

    Article  Google Scholar 

  6. Chu K, Jia C, Li W (2012) Effective thermal conductivity of graphene-based composites. Appl Phys Lett 101:121916

    Article  Google Scholar 

  7. Shahil KM, Balandin AA (2012) Graphene–multilayer graphene nanocomposites as highly efficient thermal interface materials. Nano Lett 12:861–867

    Article  Google Scholar 

  8. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907

    Article  Google Scholar 

  9. Chu K, Wu Q, Jia C, Liang X, Nie J, Tian W et al (2010) Fabrication and effective thermal conductivity of multi-walled carbon nanotubes reinforced Cu matrix composites for heat sink applications. Compos Sci Technol 70:298–304

    Article  Google Scholar 

  10. Zhu Y-F, Ma C, Zhang W, Zhang R-P, Koratkar N, Liang J (2009) Alignment of multiwalled carbon nanotubes in bulk epoxy composites via electric field. J Appl Phys 105:054316–054319

    Article  Google Scholar 

  11. Park JG, Cheng Q, Lu J, Bao J, Li S, Tian Y et al (2012) Thermal conductivity of MWCNT/epoxy composites: the effects of length, alignment and functionalization. Carbon 50:2083–2090

    Article  Google Scholar 

  12. Xie X-L, Mai Y-W, Zhou X-P (2005) Dispersion and alignment of carbon nanotubes in polymer matrix: a review. Mater Sci Eng R 49:89–112

    Article  Google Scholar 

  13. Yousefi N, Gudarzi MM, Zheng Q, Aboutalebi SH, Sharif F, Kim J-K (2012) Self-alignment and high electrical conductivity of ultralarge graphene oxide–polyurethane nanocomposites. J Mater Chem 22:12709–12717

    Article  Google Scholar 

  14. Yousefi N, Lin X, Zheng Q, Shen X, Pothnis JR, Jia J et al (2013) Simultaneous 〈i〉 in situ 〈/i〉 reduction, self-alignment and covalent bonding in graphene oxide/epoxy composites. Carbon 59:406–417

    Article  Google Scholar 

  15. Song W-L, Cao M-S, Lu M–M, Yang J, Ju H-F, Hou Z-L et al (2013) Alignment of graphene sheets in wax composites for electromagnetic interference shielding improvement. Nanotechnology 24:115708

    Article  Google Scholar 

  16. Babaei H, Keblinski P, Khodadadi J (2013) Thermal conductivity enhancement of paraffins by increasing the alignment of molecules through adding CNT/graphene. Int J Heat Mass Transf 58:209–216

    Article  Google Scholar 

  17. Tolbert SH, Firouzi A, Stucky GD, Chmelka BF (1997) Magnetic field alignment of ordered silicate-surfactant composites and mesoporous silica. Science 278:264–268

    Article  Google Scholar 

  18. Erb RM, Libanori R, Rothfuchs N, Studart AR (2012) Composites reinforced in three dimensions by using low magnetic fields. Science 335:199–204

    Article  Google Scholar 

  19. Zhou K, Zhu Y, Yang X, Li C (2010) One-pot preparation of graphene/Fe3O4 composites by a solvothermal reaction. New J Chem 34:2950–2955

    Article  Google Scholar 

  20. Liang J, Xu Y, Sui D, Zhang L, Huang Y, Ma Y et al (2010) Flexible, magnetic, and electrically conductive graphene/Fe3O4 paper and its application for magnetic-controlled switches. J Phys Chem C 114:17465–17471

    Article  Google Scholar 

  21. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y et al (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565

    Article  Google Scholar 

  22. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240

    Article  Google Scholar 

  23. Sun J, Zhou S, Hou P, Yang Y, Weng J, Li X et al (2007) Synthesis and characterization of biocompatible Fe3O4 nanoparticles. J Biomed Mater Res A 80:333–341

    Article  Google Scholar 

  24. Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Graphene-based polymer nanocomposites. Polymer 52:5–25

    Article  Google Scholar 

  25. Aurbach D, Ein-Eli Y (1995) The study of Li–graphite intercalation processes in several electrolyte systems using in situ X-ray diffraction. J Electrochem Soc 142:1746–1752

    Article  Google Scholar 

  26. Cole H (1970) Bragg’s law and energy sensitive detectors. J Appl Crystallogr 3:405–406

    Article  Google Scholar 

  27. Wan J, Cai W, Feng J, Meng X, Liu E (2007) In situ decoration of carbon nanotubes with nearly monodisperse magnetite nanoparticles in liquid polyols. J Mater Chem 17:1188–1192

    Article  Google Scholar 

  28. Liu H, Yang W (2011) Ultralong single crystalline V2O5 nanowire/graphene composite fabricated by a facile green approach and its lithium storage behavior. Energy Environ Sci 4:4000–4008

    Article  Google Scholar 

  29. Patterson A (1939) The Scherrer formula for X-ray particle size determination. Phys Rev 56:978

    Article  Google Scholar 

  30. Paredes J, Villar-Rodil S, Martinez-Alonso A, Tascon J (2008) Graphene oxide dispersions in organic solvents. Langmuir 24:10560–10564

    Article  Google Scholar 

  31. Grosvenor A, Kobe B, Biesinger M, McIntyre N (2004) Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf Interface Anal 36:1564–1574

    Article  Google Scholar 

  32. Fujii T, De Groot F, Sawatzky G, Voogt F, Hibma T, Okada K (1999) In situ XPS analysis of various iron oxide films grown by NO2-assisted molecular-beam epitaxy. Phys Rev B 59:3195

    Article  Google Scholar 

  33. Li B, Cao H, Shao J, Qu M, Warner JH (2011) Superparamagnetic Fe3O4 nanocrystals@ graphene composites for energy storage devices. J Mater Chem 21:5069–5075

    Article  Google Scholar 

  34. Fan X, Jiao G, Zhao W, Jin P, Li X (2013) Magnetic Fe3O4–graphene composites as targeted drug nanocarriers for pH-activated release. Nanoscale 5:1143–1152

    Article  Google Scholar 

  35. Duesberg G, Loa I, Burghard M, Syassen K, Roth S (2000) Polarized Raman spectroscopy on isolated single-wall carbon nanotubes. Phys Rev Lett 85:5436

    Article  Google Scholar 

  36. Gommans H, Alldredge J, Tashiro H, Park J, Magnuson J, Rinzler A (2000) Fibers of aligned single-walled carbon nanotubes: polarized Raman spectroscopy. J Appl Phys 88:2509–2514

    Article  Google Scholar 

  37. Ferrari A, Meyer J, Scardaci V, Casiraghi C, Lazzeri M, Mauri F et al (2006) Raman spectrum of graphene and graphene layers. Phys Rev Lett 97:187401

    Article  Google Scholar 

  38. Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35:1350–1375

    Article  Google Scholar 

  39. Yu J, Huang X, Wu C, Wu X, Wang G, Jiang P (2012) Interfacial modification of boron nitride nanoplatelets for epoxy composites with improved thermal properties. Polymer 53:471–480

    Article  Google Scholar 

  40. Nan CW, Birringer R, Clarke DR, Gleiter H (1997) Effective thermal conductivity of particulate composites with interfacial thermal resistance. J Appl Phys 81:6692

    Article  Google Scholar 

  41. Chu K, Li W, Jia C, Tang F (2012) Thermal conductivity of composites with hybrid carbon nanotubes and graphene nanoplatelets. Appl Phys Lett 101:211903

    Article  Google Scholar 

  42. Lin Z, Liu Y, Raghavan S, Moon K-S, Sitaraman SK, Wong C-P (2013) Magnetic alignment of hexagonal boron nitride platelets in polymer matrix: toward high performance anisotropic polymer composites for electronic encapsulation. ACS Appl Mater Interfaces 5:7633–7640

    Article  Google Scholar 

  43. Terao T, Zhi C, Bando Y, Mitome M, Tang C, Golberg D (2010) Alignment of boron nitride nanotubes in polymeric composite films for thermal conductivity improvement. J Phys Chem C 114:4340–4344

    Article  Google Scholar 

  44. Yan Z, Liu G, Khan JM, Balandin AA (2012) Graphene quilts for thermal management of high-power GaN transistors. Nat Commun 3:827

    Article  Google Scholar 

  45. Nika D, Ghosh S, Pokatilov E, Balandin A (2009) Lattice thermal conductivity of graphene flakes: comparison with bulk graphite. Appl Phys Lett 94:203103

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Key Disciplines Fund of Shaanxi Province (080503) and the Shaanxi Key Laboratory of Photoelectric Functional Materials and devices (ZSKJ201314).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyan Yan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 115 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, H., Tang, Y., Long, W. et al. Enhanced thermal conductivity in polymer composites with aligned graphene nanosheets. J Mater Sci 49, 5256–5264 (2014). https://doi.org/10.1007/s10853-014-8198-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8198-z

Keywords

Navigation