Skip to main content
Log in

Controlled synthesis of train-structured montmorillonite/layered double hydroxide nanocomposites by regulating the hydrolysis of polylactic acid

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Two-dimensional nanosheets obtained by exfoliation can assemble into new functional nanomaterial. One of the critical challenges is developing an efficient method to make the layered composite complete exfoliation, and another is regulating and controlling nanosheets assembly to obtain the nanocomposite with specific structure. In this article, the platelets of layered double hydroxides (LDH) and montmorillonite (MMT) are exfoliated completely and efficiently in polylactic acid (PLA) by melting blend for 10 min, and the monolayers of MMT or LDH can store stably in PLA for a long time. A new well-organized layered nanocomposite containing the nanosheets of LDH and MMT was gained by being exfoliated and assembling. The structure of MMT/LDH nanocomposite not only holds a periodically alternating structure, but also possesses a train structure, and the formation mechanism of train structure is proposed at the first time; furthermore, the structure of MMT/LDH could be regulated and controlled. Fortunately, even being exfoliated and assembled, MMT nanosheet or LDH nanosheet was not destroyed. The MMT/LDH nanocomposite with expectant structure can be obtained by this efficient and environmentally friendly method, and this method may easily be extended to other layered materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Li C, Zhang J, Lin Y, Chen Y, Xie X, Wang H, Wang L (2016) In situ growth of layered double hydroxide on disordered platelets of montmorillonite. Appl Clay Sci 119:103–108

    Article  CAS  Google Scholar 

  2. Backes C, Higgins TM, Kelly A, Boland C, Harvey A, Hanlon D, Coleman JN (2016) Guidelines for exfoliation, characterization and processing of layered materials produced by liquid exfoliation. Chem Mater 29:243–255

    Article  Google Scholar 

  3. Wang Q, O’Hare D (2012) Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem Rev 112:4124–4155

    Article  CAS  Google Scholar 

  4. Alves JL, Rosa PDVE, Morales AR (2016) A comparative study of different routes for the modification of montmorillonite with ammonium and phosphonium salts. Appl Clay Sci 132–133:475–484

    Article  Google Scholar 

  5. Oraon R, De Adhikari A, Tiwari SK, Nayak GC (2016) Enhanced specific capacitance of self-assembled three-dimensional carbon nanotube/layered silicate/polyaniline hybrid sandwiched nanocomposite for supercapacitor applications. ACS Sustain Chem Eng 4:1392–1403

    Article  CAS  Google Scholar 

  6. Zhu J, Liu X, Geier ML, McMorrow JJ, Jariwala D, Beck ME, Huang W, Marks TJ, Hersam MC (2016) Layer-by-layer assembled 2D montmorillonite dielectrics for solution-processed electronics. Adv Mater 28:63–68

    Article  CAS  Google Scholar 

  7. Takahashi N, Hata H, Kuroda K (2011) Exfoliation of Layered silicates through immobilization of imidazolium groups. Chem Mater 23:266–273

    Article  CAS  Google Scholar 

  8. Gaharwar AK, Mihaila SM, Swam A, Patel A, Sant S, Reis RL, Marques AP, Gomes ME, Khademhosseini A (2013) Bioactive silicate nanoplatelets for osteogenic differentiation of human mesenchymal stem cells. Adv Mater 25:3329–3336

    Article  CAS  Google Scholar 

  9. Liu YG, Zhang XM, Tu XH, Wei CB, Lv LL (2014) Direct electron transfer of hemoglobin intercalated in exfoliated Ni–Al–CO3 layered double hydroxide and its electrocatalysis towards hydrogen peroxide. Anal Methods 6:4061–4066

    Article  CAS  Google Scholar 

  10. Mamedov A, Ostrander J, Farkhad Aliev A, Kotov N (2000) Stratified assemblies of magnetite nanoparticles and montmorillonite prepared by the layer-by-layer assembly. Langmuir 16:3941–3949

    Article  CAS  Google Scholar 

  11. Coronado E, Ribera A (2010) Intercalation of two-dimensional oxalate-bridged molecule-based magnets into layered double hydroxide hosts. J Mater Chem 20:9476–9483

    Article  CAS  Google Scholar 

  12. Zhu Y, Zhou Y, Zhang T, He M, Wang Y, Yang X, Yang Y (2012) Preparation and characterization of lactate-intercalated Co–Fe layered double hydroxides and exfoliated nanosheet film with low infrared emissivity. Appl Surf Sci 263:132–138

    Article  CAS  Google Scholar 

  13. Wang Y, Zhou Y, Zhang T, He M, Bu X (2014) Coassembly of exfoliated Ni–In LDHs nanosheets with DNA and infrared emissivity study. J Mater Sci 49:6944–6951. https://doi.org/10.1007/s10853-014-8399-5

    Article  CAS  Google Scholar 

  14. Sun Y, Zhou Y, Ye X, Chen J, Wang Z (2008) Fabrication and infrared emissivity study of hybrid materials based on immobilization of collagen onto exfoliated LDH. Mater Lett 62:2943–2946

    Article  CAS  Google Scholar 

  15. Wang L, Su S, Chen D, Wilkie CA (2009) Fire retardancy of bis[2-(methacryloyloxy)ethyl] phosphate modified poly(methyl methacrylate) nanocomposites containing layered double hydroxide and montmorillonite. Polym Degrad Stabil 94:1110–1118

    Article  CAS  Google Scholar 

  16. Zammarano M, Franceschi M, Bellayer S, Gilman JW, Meriani S (2005) Preparation and flame resistance properties of revolutionary self-extinguishing epoxy nanocomposites based on layered double hydroxides. Polymer 46:9314–9328

    Article  CAS  Google Scholar 

  17. Costache MC, Heidecker MJ, Manias E, Camino G, Frache A, Beyer G, Gupta RK, Wilkie CA (2007) The influence of carbon nanotubes, organically modified montmorillonites and layered double hydroxides on the thermal degradation and fire retardancy of polyethylene, ethylene-vinyl acetate copolymer and polystyrene. Polymer 48:6532–6545

    Article  CAS  Google Scholar 

  18. Alcantara ACS, Aranda P, Darder M, Ruiz-Hitzky E (2010) Bionanocomposites based on alginate–zein/layered double hydroxide materials as drug delivery systems. J Mater Chem 20:9495–9504

    Article  CAS  Google Scholar 

  19. Plank J, Zhimin D, Keller H, Hössle FV, Seidl W (2010) Fundamental mechanisms for polycarboxylate intercalation into C3A hydrate phases and the role of sulfate present in cement. Cement Concr Res 40:45–57

    Article  CAS  Google Scholar 

  20. Kawagoe H, Imo-oka N, Shinohara H, Yamanaka S (2014) Ship-in-bottle synthesis of the mixed-layered compounds of clay silicate/zirconium phosphate. Dalton T 43:10642–10650

    Article  CAS  Google Scholar 

  21. Ge X, Gu C, Yin Z, Wang X, Tu J, Li J (2016) Periodic stacking of 2D charged sheets: self-assembled superlattice of Ni–Al layered double hydroxide (LDH) and reduced graphene oxide. Nano Energy 20:185–193

    Article  CAS  Google Scholar 

  22. Nicolosi V, Chhowalla M, Kanatzidis MG, Strano MS, Coleman JN (2010) Liquid exfoliation of layered materials. Science 340:1420. https://doi.org/10.1126/science.1226419

    Article  CAS  Google Scholar 

  23. Li L, Ma R, Ebina Y, Nobuo Iyi A, Sasaki T (2007) Layer-by-layer assembly and spontaneous flocculation of oppositely charged oxide and hydroxide nanosheets into inorganic sandwich layered materials. J Am Chem Soc 129:8000–8007

    Article  CAS  Google Scholar 

  24. Gunjakar JL, Kim TW, Kim HN, Kim IY, Hwang SJ (2011) Mesoporous layer-by-layer ordered nanohybrids of layered double hydroxide and layered metal oxide: highly active visible light photocatalysts with improved chemical stability. J Am Chem Soc 133:14998–15007

    Article  CAS  Google Scholar 

  25. Paton KR, Varrla E, Backes C, Smith RJ, Khan U, O’Neill A, Boland C, Lotya M et al (2014) Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat Mater 13:624–630

    Article  CAS  Google Scholar 

  26. Coleman JN, Lotya M, O’Neill A, Bergin SD, King PJ, Khan U, Young K, Gaucher A et al (2011) Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331:568–571

    Article  CAS  Google Scholar 

  27. Li LMR, Ebina Y, Nobuo Iyi A, Sasaki T (2005) Positively charged nanosheets derived via total delamination of layered double hydroxides. Chem Mater 17:4386–4391

    Article  CAS  Google Scholar 

  28. Meyn K, Beneke K, Lagaly G (1990) Anion-exchange reactions of layered double hydroxides. Inorg Chem 29:5201–5207

    Article  CAS  Google Scholar 

  29. Chalasani R, Gupta A, Vasudevan S (2013) Engineering new layered solids from exfoliated inorganics: a periodically alternating hydrotalcite–montmorillonite layered hybrid. Sci Rep UK 3:3498. https://doi.org/10.1038/srep03498

    Article  Google Scholar 

  30. Singh M, Ogden MI, Parkinson GM, Buckley CE, Connolly J (2004) Delamination and reassembly of surfactant-containing Li/Al layered double hydroxides. J Mater Chem 14:871–874

    Article  CAS  Google Scholar 

  31. Adachi-pagano M, Forano C, Besse JP (2000) Delamination of layered double hydroxides by use of surfactants. Chem Commun 1:91–92

    Article  Google Scholar 

  32. Huang S, Cen X, Peng HD, Guo SZ, Wang WZ, Liu TX (2009) Heterogeneous ultrathin films of poly(vinyl alcohol)/layered double hydroxide and montmorillonite nanosheets via layer-by-layer assembly. J Phys Chem B 113:15225–15230

    Article  CAS  Google Scholar 

  33. Kooli F (2009) Exfoliation properties of acid-activated montmorillonites and their resulting organoclays. Langmuir 25:724–730

    Article  CAS  Google Scholar 

  34. Yi D, Yang R, Wilkie CA (2013) Layered double hydroxide–montmorillonite—a new nano-dimensional material. Polym Advan Technol 24:204–209

    Article  CAS  Google Scholar 

  35. Amaro LP, Cicogna F, Passaglia E, Morici E, Oberhauser W, Al-Malaika S, Dintcheva NT, Coiai S (2016) Thermo-oxidative stabilization of poly(lactic acid) with antioxidant intercalated layered double hydroxides. Polym Degrad Stabil 133:92–100

    Article  Google Scholar 

  36. Scaffaro R, Sutera F, Mistretta MC, Botta L, La Mantia FP (2017) Structure–properties relationships in melt reprocessed PLA/hydrotalcites nanocomposites. Express Polym Lett 11:555–564

    Article  CAS  Google Scholar 

  37. Sinha RS (2012) Polylactide-based bionanocomposites: a promising class of hybrid materials. Acc Chem Res 45:1710–1720

    Article  Google Scholar 

  38. Mahboobeh E, Wan MZWY, Hussein Z, Ahmad M, Ibrahim NA (2010) Flexibility improvement of poly(lactic acid) by stearate-modified layered double hydroxide. J Appl Polym Sci 118:1077–1083

    CAS  Google Scholar 

  39. Carrasco F, Santana O, Cailloux J, Maspoch ML (2015) Kinetics of the thermal degradation of poly(lactic acid) obtained by reactive extrusion: influence of the addition of montmorillonite nanoparticles. Polym Test 48:69–81

    Article  CAS  Google Scholar 

  40. Zhang S, Yan Y, Wang W, Gu X, Li H, Li J, Sun J (2018) Intercalation of phosphotungstic acid into layered double hydroxides by reconstruction method and its application in intumescent flame retardant poly (lactic acid) composites. Polym Degrad Stabil 147:142–150

    Article  CAS  Google Scholar 

  41. Chang Y, Guo K, Guo L, Liu X, Chen G, Liu H, Yang H, Chen J (2016) Ploy (lactic acid)/organo-modified montmorillonite nanocomposites for improved eletret properties. J Electrostat 80:17–21

    Article  CAS  Google Scholar 

  42. Li LT, Auras R, Rubino M (2008) Processing technologies for poly(lactic acid). Prog Polym Sci 33:820–852

    Article  Google Scholar 

  43. Coiai S, Cicogna F, Santi AD, Amaro LP, Spiniello R, Signori F, Fiori S, Oberhauser W et al (2017) MMT and LDH organo-modification with surfactants tailored for PLA nanocomposites. Express Polym Lett 11:163–175

    Article  CAS  Google Scholar 

  44. Scaffaro R, Botta L, Passaglia E, Oberhauser W, Frediani M, Di Landro L (2014) Comparison of different processing methods to prepare poly(lactic acid)-hydrotalcite composites. Polym Eng Sci 54:1804–1810

    Article  CAS  Google Scholar 

  45. Adrar S, Habi A, Ajji A, Grohens Y (2018) Synergistic effects in epoxy functionalized graphene and modified organo-montmorillonite PLA/PBAT blends. Appl Clay Sci 157:65–75

    Article  CAS  Google Scholar 

  46. Wu T-M, Wu C-Y (2006) Biodegradable poly(lactic acid)/chitosan-modified montmorillonite nanocomposites: preparation and characterization. Polym Degrad Stabil 91:2198–2204

    Article  CAS  Google Scholar 

  47. Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng 28:1–63

    Article  Google Scholar 

  48. Tsipursky SI, Drits VA (1984) The distribution of octahedral cations in the 2:1 layers of dioctahedral smectites studied by oblique-texture electron diffraction. Clay Miner 19:177–193

    Article  CAS  Google Scholar 

  49. Dong XW, Zhang YD, Ding B, Hao XD, Dou H, Zhang XG (2018) Layer-by-layer self-assembled two-dimensional MXene/layered double hydroxide composites as cathode for alkaline hybrid batteries. J Power Sources 390:208–214

    Article  CAS  Google Scholar 

Download references

Funding

Funding

This research is supported by National Key R&D Plan (2016YFC0701004), National Natural Science Foundation of China (No. 51503173), Key Fund Project of Professional Scientific Research Innovation Team of Southwest University of Science and Technology (No. 14tdfk01), funded by Longshan academic talent research supporting program of SWUST (17LZX636, 18LZX629).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ping Zhang or Xiuli Zhao.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Z., Zhang, P., Xie, R. et al. Controlled synthesis of train-structured montmorillonite/layered double hydroxide nanocomposites by regulating the hydrolysis of polylactic acid. J Mater Sci 53, 15859–15870 (2018). https://doi.org/10.1007/s10853-018-2758-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2758-6

Keywords

Navigation