Skip to main content
Log in

Facile synthesis of NiSnO3/graphene nanocomposite for high-performance electrode towards asymmetric supercapacitor device

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Potentially, active nickel stannate (NiSnO3)/graphene nanosheets (GNS) composite was prepared using facile hydrothermal method. From XRD analysis, the average crystallite size of NiSnO3 nanoparticles and NiSnO3/GNS nanocomposite was found to be 5 and 3 nm, respectively. XPS analysis revealed chemical species and oxidation state of elements present on the surface of the samples. HRSEM analysis showed the formation of elongated shape of NiSnO3/graphene nanocomposite with size of ~ 6 nm. Moreover, the internal structure and interactions between stannate and graphene were examined using transmission electron microscope analysis. BET analysis revealed the significant increase in surface area of 162 m2/g in NiSnO3/GNS nanocomposite, whereas bare NiSnO3 nanoparticles showed 101 m2/g. Electrochemical performance of bare NiSnO3 and NiSnO3/GNS nanocomposite was studied using cyclic voltammetry and charge–discharge techniques. Cyclic voltammetry of NiSnO3/GNS resulted in maximum specific capacitance of 891 F/g at a scan rate of 5 mV/s which is higher than that of NiSnO3 alone 570 F/g at same scan rate. Electrochemical impedance spectra show negligible charge transfer resistance of 1.6 and 1.5 Ω for NiSnO3 and NiSnO3/GNS, respectively. Enhancement in the electrochemical performance of NiSnO3/GNS is mainly due to graphene incorporation which provided high surface area, thereby offering high interfacial sites, electrical conductivity and improved redox activity. Further, an asymmetric supercapacitor was constructed using NiSnO3/GNS nanocomposite and activated carbon acted as positive and negative electrodes within an operating potential window of 0–0.8 V. Fabricated asymmetric device delivered a high energy density of 42.54 Wh/kg at a power density of 0.34 kW/kg. Moreover, this device exhibited excellent charge–discharge cycling stability with 88.3% capacitance retention even after 4000 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18

Similar content being viewed by others

References

  1. Moreno-Fernandez G, Ibanez J, Rojo JM, Kunowsky M (2017) Activated carbon fiber monoliths as supercapacitor electrodes. Adv Mater Sci Eng Volume 2017, Article ID 3625414. https://doi.org/10.1155/2017/3625414

    Article  Google Scholar 

  2. Zhu Y, Ji X, Wu Z, Song W, Hou H, Wu Z, He X, Chen Q, Banks CE (2014) Spinel NiCo2O4 for use as a high-performance supercapacitor electrode material: understanding of its electrochemical properties. J Power Sources 267:888–900

    Article  CAS  Google Scholar 

  3. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    Article  CAS  Google Scholar 

  4. Li Y, Tang F, Wang R, Wang C, Liu J (2016) A novel dual-ion hybrid supercapacitor based on NiCo2O4 nanowire cathode and MoO2–C nanofilm anode. ACS Appl Mater Interfaces 8(44):30232–30238

    Article  CAS  Google Scholar 

  5. Bhisel SC, Awale DV, Vadiyar MM, Patil SK, Kokare BN, Kolekar SS (2017) Facile synthesis of CuO nanosheets as electrode for supercapacitor with long cyclic stability in novel methyl imidazole-based ionic liquid electrolyte. J Solid State Electrochem 21:2585–2591

    Article  Google Scholar 

  6. Cheng Z, Pengfei Z, Sheng D, De-en J (2016) Boron supercapacitors. ACS Energy Lett 1:1241–1246

    Article  Google Scholar 

  7. Maheswari N, Muralidharan G (2015) Supercapacitor behaviour of cerium oxide nanoparticles in neutral aqueous electrolytes. ACS Energy Fuels 29:8246–8253

    Article  CAS  Google Scholar 

  8. Zhang J, Li L, Su H, Huang W, Dong X (2015) Binary metal oxide: advanced energy storage materials in supercapacitors. J Mater Chem A 3:43–59

    Article  CAS  Google Scholar 

  9. Zhang J, Liu F, Cheng JP, Zhang NB (2015) Binary Nickel–Cobalt oxides electrode materials for high-performance supercapacitors: influence of its composition and porous nature. ACS Appl Mater Interfaces 7:17630–17640

    Article  CAS  Google Scholar 

  10. Sung Lee M-T, Chang J-K, Hsieh Y-T, Tsai W-T (2008) Annealed Mn–Fe binary oxides for supercapacitor applications. J Power Sources 185:1550–1556

    Article  Google Scholar 

  11. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon J-M (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407:496–499

    Article  CAS  Google Scholar 

  12. Yan L, Zhong-yang L, Chun-jiang Y, Dan L, Zhu-an X, Ke-fa C (2005) The impact of NiO on microstructure and electrical property of solid oxide fuel cell anode. J Zhejiang Univ Sci 6B(11):1124–1129

    Article  Google Scholar 

  13. Dirksen JA, Duval K, Ring TA (2001) NiO thin-film formaldehyde gas sensor. Sens Actuators B 80:106–115

    Article  CAS  Google Scholar 

  14. Hotovya I, Rehaceka V, Sicilianob P, Caponec S, Spiessd L (2002) Sensing characteristics of NiO thin films as NO2 gas sensor. Thin Solid Films 418:9–15

    Article  Google Scholar 

  15. Xiao H, Yao S, Liu H, Qu F, Zhang X, Wu X (2016) NiO nanosheet assembles for supercapacitor electrode materials. Prog Nat Sci Mater Int 26:271–275

    Article  CAS  Google Scholar 

  16. Vijayakumar S, Nagamuthu S, Muralidharan G (2013) Supercapacitor studies on NiO nanoflakes synthesized through a microwave route. ACS Appl Mater Interfaces 5:2188–2196

    Article  CAS  Google Scholar 

  17. Kim S, Lee J-S, Ahn H-J, Song H-K, Jang J-H (2013) Facile route to an efficient NiO supercapacitor with a three-dimensional nanonetwork morphology. ACS Appl Mater Interfaces 5:1596–1603

    Article  CAS  Google Scholar 

  18. Xiao H, Qu F, Wu X (2016) Ultrathin NiO nanoflakes electrode materials for supercapacitors. Appl Surf Sci 360:8–13

    Article  CAS  Google Scholar 

  19. Yu W, Li BQ, Ding SJ (2016) Electroless fabrication and supercapacitor performance of CNT@ NiO-nanosheet composite nanotubes. IOP Nanotechnol 27:075605

    Article  CAS  Google Scholar 

  20. Singh AK, Janotti A, Scheffler M, Van de Wallel CG (2008) Sources of electrical conductivity in SnO2. Phys Rev Lett 101:055502

    Article  Google Scholar 

  21. Naje AN, Norry AS, Suhail AM (2013) Preparation and characterization of SnO2 nanoparticles. IJIRSET 2:7068–7072

    Google Scholar 

  22. Xue H, Zhao J, Taang J, Gong H, De P, Zhou H, Yamauchi Y, He J (2016) High-loading nano-SnO2 encapsulated in situ in three-dimensional rigid porous carbon for superior lithium-ion batteries. Chem Eur J 22:4915–4923

    Article  CAS  Google Scholar 

  23. Das S, Jayaraman V (2014) SnO2: a comprehensive review on structures and gas sensors. Prog Mater Sci 66:112–255

    Article  CAS  Google Scholar 

  24. Dubow JB, Burk DE (2005) Solar cells of indium tin oxide on silicon. IEEE Xplore Digit Libr 10(7):230–232

    Google Scholar 

  25. Dipak SV, Deok Yeon L, Supriya AP, Isuel L, Sambhaji BS, Wonjoo L, Myung SM, Rajaram MS, Nabeen SK, Sung-Hwan H (2013) Anodically fabricated self-organized nanoporous tin oxide film as a supercapacitor electrode material. RSC Adv 3:9431–9435

    Article  Google Scholar 

  26. Yadav A (2016) Spray deposition of tin oxide thin films for supercapacitor applications: effect of solution molarity. J Mater Sci Mater Electron 27:6985–6991

    Article  CAS  Google Scholar 

  27. Moghadama LN, Salavati-Niasari M (2017) Facile synthesis and characterization of NiO–SnO2 ceramic nanocomposite and its unique performance in organic pollutants degradation. J Mol Struct 1146:629–634

    Article  Google Scholar 

  28. Mohd Faiz H, Rahman MM, Zaiping G, Zhixin C, Huakun L (2010) SnO2–NiO–C nanocomposite as a high capacity anode material for lithium-ion batteries. J Mater Chem 20:9707–9712

    Article  Google Scholar 

  29. Petronela P, Anton A, Niculae O, Iulian P, Valentin N, Liviu S, Florin T (2016) Microstructure, electrical and humidity sensor properties of electrospun NiO–SnO2 nanofibers. Sens Actuators 222:1024–1031

    Article  Google Scholar 

  30. Yude W, Xiaodan S, Yanfeng L, Zhenlai Z, Xinghui W (2000) Perovskite-type NiSnO3 used as the ethanol sensitive material. Solid State Electron 44:2009–2014

    Article  Google Scholar 

  31. Mhamdi A, Dridi R, Arfaoui A, Awada C, Karyaoui M, Velasco-Davalos IA, Ruediger A, Amlouk M (2015) Structural, surface morphology and optical properties of NiSnO3 thin films prepared using spray technique. Opt Mater 47:386–390

    Article  CAS  Google Scholar 

  32. Li X, Wang C (2012) Significantly increased cycling performance of novel “self-matrix” NiSnO3 anode in lithium ion battery application. RSC Adv 2:6150–6154

    Article  CAS  Google Scholar 

  33. Fu L, Song K, Li X, Van Peter A, Aken C, Wang J, Maier YYu (2014) Direct evidence of a conversion mechanism in a NiSnO3 anode for lithium ion battery application. RSC Adv 4:36301–36306

    Article  CAS  Google Scholar 

  34. Umeshbabu E, Rajeshkhannal G, Ranga Rao G (2015) Effect of solvents on the morphology of NiCo2O4/graphene nanostructures for electrochemical pseudocapacitor application. J Solid State Electrochem 20:1837–1844

    Article  Google Scholar 

  35. Bhoyate S, Mensah-Darkwa K, Kahol PK, Gupta RK (2017) Recent development on nanocomposites of graphene for supercapacitor applications. Curr Graphene Sci 1:26–43

    Article  Google Scholar 

  36. Junbo H, Yuyan S, Michael EW, Robert MB, Baolian Y (2011) Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries. Phys Chem Chem Phys 13:15384–15402

    Article  Google Scholar 

  37. Russo P, Hu A, Compagnini G (2013) Synthesis, properties and potential applications of porous graphene: a review. Nano-Micro Lett 5:260–273

    Article  Google Scholar 

  38. Wu C, Deng S, Wang H, Sum Y, Liu J, Yan H (2014) Preparation of novel three-dimensional NiO/ultrathin derived graphene hybrid for supercapacitor applications. ACS Appl Mater Interfaces 6:1106–1112

    Article  CAS  Google Scholar 

  39. Velmurugana V, Srinivasaraoa Y, Ramachandrana R, Saranyaa M, Santhosh C, Grace AN (2016) Synthesis of tin oxide/graphene (SnO2/G) nanocomposite and its electrochemical properties for supercapacitor applications. Mater Res Bull 84:145–151

    Article  Google Scholar 

  40. Li C, Liu S, Liu L (2012) Preparation and characterization of flower like nickel oxide. Appl Mech Mater 121–126:1044–1048

    Google Scholar 

  41. Alagiri M, Ponnusamy S, Muthamizhchelvan C (2012) Synthesis and characterization of NiO nanoparticles by sol–gel method. J Mater Sci Mater Electron 23:728–732

    Article  CAS  Google Scholar 

  42. Xu J, Li Y, Huang H, Zhu Y, Wang Z, Xie Z, Wang X, Chen D, Shen G (2011) Synthesis, characterizations and improved gas-sensing performance of SnO2 nanospike arrays. J Mater Chem 21:19086–19092

    Article  CAS  Google Scholar 

  43. Chen J, Zou M, Li J, Wen W, Jiang L, Chen L, Feng Q, Huang Z (2016) NiSnO3 nanoparticles/reduced graphene oxide composite with enhanced performance as lithium-ion battery anode material. RSC Adv 6:85374–85380

    Article  CAS  Google Scholar 

  44. Johra FT, Lee JW, Jung WG (2014) Facile and safe graphene preparation on solution based platform. J Ind Eng Chem 20:2883–2887

    Article  CAS  Google Scholar 

  45. Khorsand ZA, Abd Majid WH, Abrishami ME, Yousefi R (2011) X-ray analysis of ZnO nanoparticles by Williamson–Hall and size-strain plot methods. Solid State Sci 13:251–256

    Article  Google Scholar 

  46. Anitha SN, Jayakumari I (2015) Synthesis and analysis of noncrystalline Fe2Mn2Ni0.5Zn1.5O9 at different treating temperatures. J Nanosci Technol 1:26–31

    Google Scholar 

  47. Naveen AN, Selladurai S (2016) Novel synthesis of highly porous three-dimensional nickel cobaltite for supercapacitor applications. Ionics 22:1471–1483

    Article  CAS  Google Scholar 

  48. Rajender G, Giri PK (2016) Strain induced phase formation, microstructural evolution and bandgap narrowing in strained TiO2 nanocrystals grown by ball milling. J Alloys Compd 676:591–600

    Article  CAS  Google Scholar 

  49. Chen H-L, Lu Y-M, Hwang W-S (2005) Effect of film thickness on structural and electrical properties of sputter-deposited nickel oxide films. Mater Trans 46:872–879

    Article  CAS  Google Scholar 

  50. Bushroa AR, Rahbari RG, Masjuki HH, Muhamad MR (2012) Approximation of crystallite size and microstrain via XRD line broadening analysis in TiSiN thin films. Vacuum 86:1107–1112

    Article  CAS  Google Scholar 

  51. Basharata F, Ranab UA, Shahida M, Serwar M (2015) Heat treatment of electrodeposited NiO films for improved catalytic water oxidation. RSC Adv 5:86713–86722

    Article  Google Scholar 

  52. Anna Paola C, Armando L, Roberto R (2009) Nanoparticle thin films for gas sensors prepared by matrix assisted pulsed laser evaporation. Sensors 9:2682–2696

    Article  Google Scholar 

  53. Carlos Sergio F, Pamyla Layene S, Juliano Alves B, Raimundo Ribeiro P, Leandro Aparecido P (2015) Rice husk reuse in the preparation of SnO2/SiO2 nanocomposite. Mater Res 18:639–643

    Article  Google Scholar 

  54. Tan L, Wang L, Wang Y (2011) Hydrothermal synthesis of SnO2 nanostructures with different morphologies and their optical properties. J Nanomater 23:1–10

    Article  Google Scholar 

  55. Gunasekaran S, Rajkumar R (2003) Fourier transform infrared spectrum and normal coordinate analysis of chloroxylenol. Indian J Pure Appl Phys 41:839–843

    CAS  Google Scholar 

  56. Zhao Y, Frost RL, Yang J, Martens WN (2008) Size and morphology control of Gallium oxide hydroxide GaO(OH), Nano- to micro-sized particles by soft-chemistry route without surfactant. J Phys Chem C 112:3568

    Article  CAS  Google Scholar 

  57. Mansour AN (1994) Characterization of NiO by XPS. Surf Sci Spectra 3:231–238

    Article  CAS  Google Scholar 

  58. Stranick MA, Moskwa A (1993) SnO2 by XPS. Surf Sci Spectra 2:50–54

    Article  CAS  Google Scholar 

  59. Huang Y-L, Tien H-W, Ma C-CM, Yang S-Y, Wu S-Y, Liu H-Y, Mai Y-W (2011) Effect of extended polymer chains on properties of transparent graphene nanosheets conductive film. J Matter Chem 21:18236–18241

    Article  CAS  Google Scholar 

  60. Wang DH, Hu Y, Zhao JJ, Zeng LL, Taob XM, Chen W (2014) Holey reduced graphene oxide nanosheets for high performance room temperature gas sensing. J Mater Chem A 2:17415–17420

    Article  CAS  Google Scholar 

  61. Padmanathan N, Selladurai S (2014) Electrochemical capacitance of porous NiO–CeO2 binary oxide synthesized via sol–gel technique for supercapacitor. Ionics 20:409–420

    Article  CAS  Google Scholar 

  62. Naveen AN, Selladurai S (2016) Novel synthesis of highly porous three-dimensional nickel cobaltite for supercapacitor application. Ionics 22:1471–1483

    Article  CAS  Google Scholar 

  63. Matthew PY, Dong S, Nebojsa SM, Xiaowei T (2012) Pseudocapacitive NiO fine nanoparticles for supercapacitor reactions. J Electrochem Soc 159:A1598–A1603

    Article  Google Scholar 

  64. Li-Qiang M, Aamir Minhas K, Xiaocong T, Kalele Mulonda H, Yun-Long Z, Xu L, Xu X (2013) Synergistic interaction between redox-active electrolyte and binder-free functionalized carbon for ultrahigh supercapacitor performance. Nat Commun 4:2923

    Article  Google Scholar 

  65. Pandit B, Dubal DP, Sankapal B (2017) Large scale flexible solid state symmetric supercapacitor through inexpensive solution processed V2O5 complex surface architecture. Electrochim Acta 242:382–389

    Article  CAS  Google Scholar 

  66. Chen PC, Shen G, Shi Y, Chen H, Zhou C (2010) Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes. ACS Nano 4:4403–4411

    Article  CAS  Google Scholar 

  67. Cottineau T, Toupin M, Delahaye T, Brousse T, Belanger D (2006) Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors. Appl Phys A 82:599–606

    Article  CAS  Google Scholar 

  68. Ma W, Chen S, Yang S, Chen W, Weng W, Cheng Y, Zhu M (2017) Flexible all-solid-state asymmetric supercapacitor based on transition metal oxide nanorods/reduced graphene oxide hybrid fibers with high energy density. Carbon 113:151–158

    Article  CAS  Google Scholar 

  69. Singh A, Chandra A (2015) Significant performance enhancement in asymmetric supercapacitors based on metal oxides, carbon nanotubes and neutral aqueous electrolyte. Sci Rep 5:15551

    Article  CAS  Google Scholar 

  70. Li Q, Li Y, Peng H, Cui X, Zhou M, Feng K, Xiao P (2016) Layered NH4CoxNi1−xPO4·H2O (0 ≤ x ≤ 1) nanostructures finely tuned by Co/Ni molar ratios for asymmetric supercapacitor electrodes. J Mater Sci 51:9946–9957. https://doi.org/10.1007/s10853-016-0151-x

    Article  CAS  Google Scholar 

  71. Xu Y, Xuan H, Gao J, Liang T, Han X, Yang J, Zhang Y, Li H, Han P, Du Y (2018) Hierarchical three-dimensional NiMoO4-anchored rGO/Ni foam as advanced electrode material with improved supercapacitor performance. J Mater Sci 53:8483–8498. https://doi.org/10.1007/s10853-018-2171-1

    Article  CAS  Google Scholar 

  72. Li T, Wu Y, Wang Q, Zhang D, Zhang A, Miao M (2017) TiO2 crystalline structure and electrochemical performance in two-ply yarn CNT/TiO2 asymmetric supercapacitors. J Mater Sci 52:7733–7744. https://doi.org/10.1007/s10853-017-1033-6

    Article  CAS  Google Scholar 

  73. Xu W, Mu B, Wang A (2018) All-solid-state high-energy asymmetric supercapacitor based on natural tubular fibers. J Mater Sci 53:11659–11670. https://doi.org/10.1007/s10853-018-2418-x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. R.K. Sharma and Mr. U.K. Goutam, Scientific officers, RRCAT, Indore, for providing XPS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. E. Saranya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saranya, P.E., Selladurai, S. Facile synthesis of NiSnO3/graphene nanocomposite for high-performance electrode towards asymmetric supercapacitor device. J Mater Sci 53, 16022–16046 (2018). https://doi.org/10.1007/s10853-018-2742-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2742-1

Keywords

Navigation