Skip to main content
Log in

Synergistic Effect of Electrolytes on the Electrochemical Performance of CoFe2O4 Nanoparticles as Anode Materials for Supercapacitor Applications

  • 28th International Conference on Nuclear Tracks and Radiation Measurements
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

This article describes the synthesis of CoFe2O4 nanoparticles, which can be used to form an anode for supercapacitor applications. The CoFe2O4 nanoparticles were synthesized via a hydrothermal route. The structural parameters of the prepared samples were characterized by x-ray diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM), and the supercapacitive behavior was evaluated by cyclic voltammetry plots, galvanostatic charge–discharge plots, and electrochemical impedance spectroscopy (EIS). Rietveld refinement confirmed the spinel structure of the CoFe2O4 nanoparticles with space group Fd3m. The FE-SEM micrographs confirmed the spherical shape of the CoFe2O4 nanoparticles, with a mean particle size of 58 nm. The electrochemical performance of the samples was checked in different aqueous electrolytes: Na2SO4 and KOH. The nanoparticles exhibited differences in capacitive behavior in different aqueous electrolytes, with higher specific capacitance (362 F/g) in the KOH electrolyte due to its greater molar ionic conductivity in comparison to the Na2SO4, and a low resistance value obtained from impedance measurements was observed for CoFe2O4 nanoparticles. The cyclic stability of CoFe2O4 in KOH electrolyte, with 82.16% retention after 2000 cycles at current density of 1 A/g, evidenced its outstanding performance, with exceptionally high specific capacitance of 314 F/g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B. Rani and N.K. Sahu, Electrochemical properties of CoFe2O4 nanoparticles and its rGO composite for supercapacitor. Diam. Relat. Mater. 108, 107978 (2020).

    Article  CAS  Google Scholar 

  2. N. Budhiraja, V. Kumar, and S.K. Singh, Synergistic effect in structural and supercapacitor performance of well dispersed CoFe2O4/Co3O4 nano-hetrostructures. Ceram. Int. 44(12), 13806–13814 (2018).

    Article  Google Scholar 

  3. G. Wang, L. Zhang, and J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41(2), 797–828 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. I. Ayman, A. Rasheed, S. Ajmal, A. Rehman, A. Ali, I. Shakir, and M.F. Warsi, CoFe2O4 nanoparticle-decorated 2D MXene: a novel hybrid material for supercapacitor applications. Energy Fuels 34(6), 7622–7630 (2020).

    Article  CAS  Google Scholar 

  5. J.S. Shaikh, N.S. Shaikh, R. Kharade, S.A. Beknalkar, J.V. Patil, M.P. Suryawanshi, and P.S. Patil, Symmetric supercapacitor: sulphurized graphene and ionic liquid. J. Colloid Interface Sci. 527, 40–48 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. J.S. Sagu, K.G.U. Wijayantha, and A.A. Tahir, The pseudocapacitive nature of CoFe2O4 thin films. Electrochim. Acta 246, 870–878 (2017).

    Article  CAS  Google Scholar 

  7. R. Bhosale, S. Bhosale, V. Chavan, C. Jambhale, D.-k Kim, and S. Kolekar, Hybrid supercapacitors based on nanoporous carbon and CoFe2O4 derived from a bimetallic organic framework. ACS Appl. Nano Mater. 7(2), 2244–2257 (2024).

    Article  CAS  Google Scholar 

  8. C. Xia, T. Ren, R. Darabi, M. Shabani-Nooshabadi, J.J. Klemeš, C. Karaman, F. Karimi et al., Spotlighting the boosted energy storage capacity of CoFe2O4/Graphene nanoribbons: a promising positive electrode material for high-energy-density asymmetric supercapacitor. Energy 270, 126914 (2023).

    Article  CAS  Google Scholar 

  9. E. Samuel, B. Joshi, H.S. Jo, Y.I. Kim, S. An, M.T. Swihart, and S.S. Yoon, Carbon nanofibers decorated with FeOx nanoparticles as a flexible electrode material for symmetric supercapacitors. Chem. Eng. J. 328, 776–784 (2017).

    Article  CAS  Google Scholar 

  10. S. Sun, T. Zhai, C. Liang, S.V. Savilov, and H. Xia, Boosted crystalline/amorphous Fe2O3-δ core/shell heterostructure for flexible solid-state pseudo capacitors in large scale. Nano Energy 45, 390–397 (2018).

    Article  CAS  Google Scholar 

  11. H. Hu, B. Guan, B. Xia, and X.W. Lou, Designed formation of Co3O4/NiCo2O4 double-shelled nanocages with enhanced pseudocapacitive and electrocatalytic properties. J. Am. Chem. Soc. 137(16), 5590–5595 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Q. Zhao, Z. Yan, C. Chen, and J. Chen, Spinels: controlled preparation, oxygen reduction/evolution reaction application, and beyond. Chem. Rev. 117(15), 10121–10211 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. S.H. Joo, S.J. Choi, I. Oh, J. Kwak, Z. Liu, O. Terasaki, and R. Ryoo, Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature 412(6843), 169–172 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. C. Zequine, S. Bhoyate, F. Wang, X. Li, K. Siam, P.K. Kahol, and R.K. Gupta, Effect of solvent for tailoring the nanomorphology of multinary CuCo2S4 for overall water splitting and energy storage. J. Alloy. Compd. 784, 1–7 (2019).

    Article  CAS  Google Scholar 

  15. A. Kumari, K. Kumari, R.N. Aljawfi, P.A. Alvi, S. Dalela, M.M. Ahmad, A.K. Chawla, R. Kumar, A. Vij, and S. Kumar, Role of La substitution on structural, optical, and multiferroic properties of BiFeO3 nanoparticles. Appl. Nanosci. 13(5), 3161–3180 (2023).

    Article  CAS  Google Scholar 

  16. Ravina, S. Kumar, S.Z. Hashmi, G. Srivastava, J. Singh, A.M. Quraishi, S. Dalela, F. Ahmed, and P.A. Alvi, Synthesis and investigations of structural, surface morphology, electrochemical, and electrical properties of NiFe2O4 nanoparticles for usage in supercapacitors." J. Mater. Sci.: Mater. Electr. 34(10), 868 (2023).

    CAS  Google Scholar 

  17. J. Sahu, S. Kumar, P.A. Faheem Ahmed, B. Alvi, D.M. Dalela, M.G. Phase, and S. Dalela, Electrochemical and electronic structure properties of high-performance supercapacitor based on Nd-doped ZnO nanoparticles. J. Energy Storage 59, 106499 (2023).

    Article  Google Scholar 

  18. S. Dalela, S. Kumar, B.L. Choudhary, and P.A. Alvi, Structural, optical and Raman studies of Co3O4 nano-particles. Mater. Today: Proc. 79, 165–168 (2023).

    Google Scholar 

  19. U. Ghazanfar, S.A. Siddiqi, and G. Abbas, Study of room temperature dc resistivity in comparison with activation energy and drift mobility of NiZn ferrites. Mater. Sci. Eng. B 118(1–3), 132–134 (2005).

    Article  Google Scholar 

  20. J. Petzold, Applications of nanocrystalline soft magnetic materials for modern electronic devices. Scripta Mater. 48(7), 895–901 (2003).

    Article  CAS  Google Scholar 

  21. G.A. El-Shobaky, A.M. Turky, N.Y. Mostafa, and S.K. Mohamed, Effect of preparation conditions on physicochemical, surface and catalytic properties of cobalt ferrite prepared by coprecipitation. J. Alloy. Compd. 493(1–2), 415–422 (2010).

    Article  CAS  Google Scholar 

  22. I. Sandu, L. Presmanes, P. Alphonse, and P. Tailhades, Nanostructured cobalt manganese ferrite thin films for gas sensor application. Thin Solid Films 495(1–2), 130–133 (2006).

    Article  CAS  Google Scholar 

  23. L. Lv, Q. Xu, R. Ding, L. Qi, and H. Wang, Chemical synthesis of mesoporous CoFe2O4 nanoparticles as promising bifunctional electrode materials for supercapacitors. Mater. Lett. 111, 35–38 (2013).

    Article  CAS  Google Scholar 

  24. M. Qorbani, N. Naseri, and A.Z. Moshfegh, Hierarchical Co3O4/Co(OH)2 nanoflakes as a supercapacitor electrode: experimental and semi-empirical model. ACS Appl. Mater. Interfaces 7(21), 11172–11179 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. M. Kim, Oh. Ilgeun, and J. Kim, Effects of different electrolytes on the electrochemical and dynamic behavior of electric double layer capacitors based on a porous silicon carbide electrode. Phys. Chem. Chem. Phys. 17(25), 16367–16374 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. G. Lota, K. Fic, and E. Frackowiak, Carbon nanotubes and their composites in electrochemical applications. Energy Environ. Sci. 4(5), 1592–1605 (2011).

    Article  CAS  Google Scholar 

  27. K. Song, X. Chen, R. Yang, B. Zhang, X. Wang, P. Liu, and J. Wang, Novel hierarchical CoFe2Se4@ CoFe2O4 and CoFe2S4@ CoFe2O4 core-shell nanoboxes electrode for high-performance electrochemical energy storage. Chem. Eng. J. 390, 124175 (2020).

    Article  CAS  Google Scholar 

  28. P.J.G.W.G. Scherrer, Bestimmung der Grösse und der inneren von KolloidteilchenmittelsRöntgenstrahlenStruktur Nachr. Ges Wiss Göttingen 26, 98–100 (1918).

    Google Scholar 

  29. S.B. Dangi, S.Z. Hashmi, B.L. Upendra Kumar, A.E. Choudhary, S.D. Kuznetsov, S. Kumar et al., Exploration of spectroscopic, surface morphological, structural, electrical, optical and mechanical properties of biocompatible PVA-GO PNCs. Diam. Relat. Mater. 127, 109158 (2022).

    Article  CAS  Google Scholar 

  30. M. Sharma, R.N. Aljawfi, K. Kumari, K.H. Chae, S. Dalela, S. Gautam, P.A. Alvi, and S. Kumar, Investigation of local geometrical structure, electronic state and magnetic properties of PLD grown Ni doped SnO2 thin films. J. Electr. Spectrosc. Relat. Phenom. 232, 21–28 (2019).

    Article  CAS  Google Scholar 

  31. A. Kumari, K. Kumari, F. Ahmed, P.A. Adil Alshoaibi, S.D. Alvi, M.M. Ahmad et al., Influence of Sm doping on structural, ferroelectric, electrical, optical and magnetic properties of BaTiO3. Vacuum 184, 109872 (2021).

    Article  CAS  Google Scholar 

  32. G. Srivastava, S. Kumar, S.Z. Hashmi et al., Study of structural, surface morphology, Raman spectroscopy, and electrochemical properties of Bi1+xFeO3 nanoparticles for usage in supercapacitors. Opt. Quant. Electron. 55, 1235 (2023).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia [Grant No. 5473]. The authors P. A. Alvi and Ravina acknowledge the Department of Science and Technology (DST), Government of India, for awarding the CURIE project to Banasthali Vidyapith, Rajasthan. P. A. Alvi appreciates the DST, Government of India, for granting the STUTI project to Banasthali Vidyapith.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shalendra Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Alshoaibi, A., Ravina et al. Synergistic Effect of Electrolytes on the Electrochemical Performance of CoFe2O4 Nanoparticles as Anode Materials for Supercapacitor Applications. J. Electron. Mater. (2024). https://doi.org/10.1007/s11664-024-11059-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11664-024-11059-z

Keywords

Navigation