Skip to main content
Log in

ZnS nanoparticles coated with graphene-like nano-cell as anode materials for high rate capability lithium-ion batteries

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A core–shell structure ZnS nanocomposite was synthesized by wrapping ZnS nanoparticles up in graphene-like nano-cell (GLC@ZnS) through chemical vapor deposition. The morphological and structural characteristics exhibit that the obtained GLC@ZnS composite possesses high-quality ZnS nano-sized particles and laminated graphene-like layers shell. When applied as anode materials for lithium-ion batteries, the GLC@ZnS composite (high ZnS content of 97.2%) with diameter of 30 nm delivers high reversible capacities (1134 mAh g−1 after 100 cycles at 0.5 A g−1, 890 mAh g−1 after 200 cycles at 1.0 A g−1) and excellent rate capability (701 mAh g−1 at 8.0 A g−1). The excellent electrochemical performance of the composite is ascribed to the inclosed graphene-like nano-cell, which could localize the active materials and enhance the exchange of charges and ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Megahed S, Ebner W (1995) Lithium-ion battery for electronic applications. J Power Sources 54:155–162

    Article  Google Scholar 

  2. Erickson EM, Ghanty C, Aurbach D (2014) New horizons for conventional lithium ion battery technology. J Phys Chem Lett 5:3313–3324

    Article  Google Scholar 

  3. Jusef Hassoun J, Scrosati B (2015) Review—advances in anode and electrolyte materials for the progress of lithium-ion and beyond lithium-ion batteries. J Electrochem Soc 162:A2582–A2588

    Article  Google Scholar 

  4. Fotouhi A, Auger DJ, Propp K, Longo S, Wild M (2016) A review on electric vehicle battery modelling: from lithium-ion toward lithium–sulphur. Renew Sustain Energy Rev 56:1008–1021

    Article  Google Scholar 

  5. Bruen T, Marco J (2016) Modelling and experimental evaluation of parallel connected lithium ion cells for an electric vehicle battery system. J Power Sources 310:91–101

    Article  Google Scholar 

  6. Li NW, Yin YX, Li JY, Zhang CH, Guo YG (2017) Passivation of lithium metal anode via hybrid ionic liquid electrolyte toward stable li plating/stripping. Adv Sci 4:1600400

    Article  Google Scholar 

  7. Ye H, Xin S, Yin YX, Guo YG (2017) Advanced porous carbon materials for high-efficient lithium metal anodes. Adv Energy Mater 7:1700530

    Article  Google Scholar 

  8. Yuan T, Jiang Y, Sun W, Xiang B, Li Y, Yan M, Xu B, Dou S (2016) Ever-increasing pseudocapacitance in RGO–MnO–RGO sandwich nanostructures for ultrahigh-rate lithium storage. Adv Func Mater 26:2198–2206

    Article  Google Scholar 

  9. Liu D, Liu D, Hou B, Wang Y, Guo J, Ning Q, Wu X-L (2018) 1D porous MnO@N-doped carbon nanotubes with improved Li-storage properties as advanced anode material for lithium-ion batteries. Electrochim Acta 264:292–300

    Article  Google Scholar 

  10. Tomita Y, Kimura N, Nasu H, Izumi Y, Arai J, Yamane Y, Yamada K, Kohno Y, Kobayashi K (2017) Effects of Li-doped NiO on the charge–discharge properties of LiF–NiO composites used as cathode materials for Li-ion batteries. J Appl Electrochem 47:1057–1063

    Article  Google Scholar 

  11. Iturrondobeitia A, Goni A, Gil I, de Muro L, Lezama T Rojo (2017) Physico-chemical and electrochemical properties of nanoparticulate NiO/C composites for high performance lithium and sodium ion battery anodes. Nanomaterials 7:423

    Article  Google Scholar 

  12. Li L, Kovalchuk A, Fei H et al (2015) Enhanced cycling stability of lithium-ion batteries using graphene-wrapped Fe3O4-graphene nanoribbons as anode materials. Adv Energy Mater 5:1500171

    Article  Google Scholar 

  13. Zhao L, Gao M, Yue W, Jiang Y, Wang Y, Ren Y, Hu F (2015) Sandwich-structured graphene-Fe3O4@carbon nanocomposites for high-performance lithium-ion batteries. ACS Appl Mater Interfaces 7:9709–9715

    Article  Google Scholar 

  14. Zhang H, Wang Y, Zhao W, Zou M, Chen Y, Yang L, Xu L, Wu H, Cao A (2017) MOF-derived ZnO nanoparticles covered by N-doped carbon layers and hybridized on carbon nanotubes for lithium-ion battery anodes. ACS Appl Mater Interfaces 9:37813–37822

    Article  Google Scholar 

  15. Wang Y, Deng Q, Xue W, Jian Z, Zhao R, Wang J (2018) ZnO/rGO/C composites derived from metal–organic framework as advanced anode materials for Li-ion and Na-ion batteries. J Mater Sci 53:6785–6795. https://doi.org/10.1007/s10853-018-2003-3

    Article  Google Scholar 

  16. Wang DL, Yu YC, He H, Wang J, Zhou WD, Abruna HD (2015) Template-free synthesis of hollow structured Co3O4 nanoparticles as high-performance anodes for lithium-ion batteries. ACS Nano 9:1775–1781

    Article  Google Scholar 

  17. Yan C, Chen G, Zhou X, Sun J, Lv C (2016) Template-based engineering of carbon-doped Co3O4 hollow nanofibers as anode materials for lithium-ion batteries. Adv Func Mater 26:1428–1436

    Article  Google Scholar 

  18. Zhai X, Xu X, Zhu X, Zhao Y, Li J, Jin H (2017) Porous layer assembled hierarchical Co3O4 as anode materials for lithium-ion batteries. J Mater Sci 53:1356–1364. https://doi.org/10.1007/s10853-017-1579-3

    Article  Google Scholar 

  19. Wang J, Wu J, Wu Z, Han L, Huang T, Xin HL, Wang D (2017) High-rate and long-life lithium-ion battery performance of hierarchically hollow-structured NiCo2O4/CNT nanocomposite. Electrochim Acta 244:8–15

    Article  Google Scholar 

  20. Ni SB, Yang XL, Li T (2012) Fabrication of a porous NiS/Ni nanostructured electrode via a dry thermal sulfuration method and its application in a lithium ion battery. J Mater Chem 22:2395–2397

    Article  Google Scholar 

  21. Zhang Z, Zhao H, Zeng Z, Gao C, Wang J, Xia Q (2015) Hierarchical architectured NiS@SiO2 nanoparticles enveloped in graphene sheets as anode material for lithium ion batteries. Electrochim Acta 155:85–92

    Article  Google Scholar 

  22. Wang X, Liu X, Wang G, Zhou Y, Wang H (2017) General formation of three-dimensional (3D) interconnected MxSy (M = Ni, Zn, and Fe)-graphene nanosheets-carbon nanotubes aerogels for lithium-ion batteries with excellent rate capability and cycling stability. J Power Sources 342:105–115

    Article  Google Scholar 

  23. Guo S, Li J, Ma Z, Chi Y, Xue H (2016) A facile method to prepare FeS/porous carbon composite as advanced anode material for lithium-ion batteries. J Mater Sci 52:2345–2355. https://doi.org/10.1007/s10853-016-0527-y

    Article  Google Scholar 

  24. Wu Z, Li J, Zhong Y, Liu J, Wang K, Guo X, Huang L, Zhong B, Sun S (2016) Synthesis of FeS@C–N hierarchical porous microspheres for the applications in lithium/sodium ion batteries. J Alloy Compd 688:790–797

    Article  Google Scholar 

  25. He L, Liao X, Yang K, He Y, Wen W, Ma Z (2011) Electrochemical characteristics and intercalation mechanism of ZnS/C composite as anode active material for lithium-ion batteries. Electrochim Acta 56:1213–1218

    Article  Google Scholar 

  26. Qin W, Li D, Zhang X, Yan D, Hu B, Pan L (2016) ZnS nanoparticles embedded in reduced graphene oxide as high performance anode material of sodium-ion batteries. Electrochim Acta 191:435–443

    Article  Google Scholar 

  27. Zhou Y, Yan D, Xu H, Feng J, Jiang X, Yue J, Yang J, Qian Y (2015) Hollow nanospheres of mesoporous Co9S8 as a high-capacity and long-life anode for advanced lithium ion batteries. Nano Energy 12:528–537

    Article  Google Scholar 

  28. Geng H, Yang J, Dai Z et al (2017) Co9S8/MoS2 yolk-shell spheres for advanced Li/Na storage. Small 13:1603490

    Article  Google Scholar 

  29. Yu DJ, Yuan YF, Zhang D, Yin SM, Lin JX, Rong Z, Yang JL, Chen YB, Guo SY (2016) Nickel cobalt sulfide nanotube array on nickel foam as anode material for advanced lithium-ion batteries. Electrochim Acta 198:280–286

    Article  Google Scholar 

  30. Wang Y, Kong D, Shi W, Liu B, Sim GJ, Ge Q, Yang HY (2016) Ice templated free-standing hierarchically WS2/CNT-rGO aerogel for high-performance rechargeable lithium and sodium ion batteries. Adv Energy Mater 6:1601057

    Article  Google Scholar 

  31. Su D, Kretschmer K, Wang G (2016) Improved electrochemical performance of Na-ion batteries in ether-based electrolytes: a case study of ZnS nanospheres. Adv Energy Mater 6:1501785

    Article  Google Scholar 

  32. Jiabao Li DY, Zhang Xiaojie, Hou Shujin, Ting Lu, Yao Yefeng, Pan Likun (2017) ZnS nanoparticles decorated on nitrogen-doped porous carbon polyhedra: a promising anode material for lithium-ion and sodium-ion batteries. J Mater Chem A 5:20428–20438

    Article  Google Scholar 

  33. Du X, Zhao H, Lu Y, Zhang Z, Kulka A, Świerczek K (2017) Synthesis of core-shell-like ZnS/C nanocomposite as improved anode material for lithium ion batteries. Electrochim Acta 228:100–106

    Article  Google Scholar 

  34. Du X, Zhao H, Zhang Z, Lu Y, Gao C, Li Z, Teng Y, Zhao L, Świerczek K (2017) Core-shell structured ZnS-C nanoparticles with enhanced electrochemical properties for high-performance lithium-ion battery anodes. Electrochim Acta 225:129–136

    Article  Google Scholar 

  35. Li NW, Yin YX, Xin S, Li JY, Guo YG (2017) Methods for the stabilization of nanostructured electrode materials for advanced rechargeable batteries. Small Methods 1:1700094

    Article  Google Scholar 

  36. Du H, Gui X, Yang R, Lin Z, Liang B, Chen W, Zheng Y, Zhu H, Chen J (2018) In situ sulfur loading in graphene-like nano-cell by template-free method for Li-S batteries. Nanoscale 10:3877–3883

    Article  Google Scholar 

  37. Wang J, Zhang Z, Zhang X, Yin X, Li X, Liu X, Kang F, Wei B (2017) Cation exchange formation of prussian blue analogue submicroboxes for high-performance Na-ion hybrid supercapacitors. Nano Energy 39:647–653

    Article  Google Scholar 

  38. Sheng ZH, Shao L, Chen JJ, Bao WJ, Wang FB, Xia XH (2011) Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 5:4350–4358

    Article  Google Scholar 

  39. Qiu Y, Li W, Zhao W et al (2014) High-rate, ultralong cycle-life lithium/sulfur batteries enabled by nitrogen-doped graphene. Nano Lett 14:4821–4827

    Article  Google Scholar 

  40. Fu Y, Zhang ZA, Yang X, Gan YQ, Chen W (2015) ZnS nanoparticles embedded in porous carbon matrices as anode materials for lithium ion batteries. RSC Adv 5:86941–86944

    Article  Google Scholar 

  41. Ma J, Wang X, Wang H, Wang G, Ma S (2018) Hollow ZnS submicrospheres encapsulated in carbon shells with enhanced lithium and sodium storage properties. J Alloy Compd 735:51–61

    Article  Google Scholar 

  42. Park GD, Choi SH, Lee JK, Kang YC (2014) One-pot method for synthesizing spherical-like metal sulfide-reduced graphene oxide composite powders with superior electrochemical properties for lithium-ion batteries. Chem A Eur J 20:12183–12189

    Article  Google Scholar 

  43. Laruelle S, Grugeon S, Poizot P, Dollé M, Dupont L, Tarascon JM (2002) On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential. J Electrochem Soc 149:A627–A634

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (Grant No. 51772335), Guangdong Natural Science Foundation (Grant No. 2016A030313346), Guangdong Youth Top-notch Talent Support Program (Grant No. 2015TQ01C201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuchun Gui.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1516 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, H., Gui, X., Yang, R. et al. ZnS nanoparticles coated with graphene-like nano-cell as anode materials for high rate capability lithium-ion batteries. J Mater Sci 53, 14619–14628 (2018). https://doi.org/10.1007/s10853-018-2674-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2674-9

Keywords

Navigation