Skip to main content

Advertisement

Log in

Route to design highly efficient thermal rectifiers from microstructured cellular biomorphic materials

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The application of electronic diodes has greatly motivated the development of industrial engineering, while predictably, thermal rectifiers, as thermal manipulation devices, might have broad applications in the renewable energy engineering. Here, we report a significant thermal rectification phenomenon observed by using a thermal rectifier solid-state device comprising microstructured cellular biomorphic materials and by measuring the thermal conductivities in the forward and reverse directions over a wide temperature range. Our theoretical studies, based on analytical method and simulation of finite element method, attributed the asymmetry of thermal transition in opposite directions to the microstructured cellular size-gradient geometry. We further demonstrated that the thermal rectification phenomenon was only observed when the thermal conductivity of the filled materials showed monotonic temperature dependence. Our present work suggests a convenient and practical route to design a highly efficient thermal rectifier by increasing the cellular size gradient or using materials with larger thermal conductivity to temperature ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Starr C (1936) The copper oxide rectifier. Physics 7:15–19

    Article  Google Scholar 

  2. Chumak K, Martynyak R (2012) Thermal rectification between two thermoelastic solids with a periodic array of rough zones at the interface. Int J Heat Mass Transf 55:5603–5608

    Article  Google Scholar 

  3. dos Santos Bernardes MA (2014) Experimental evidence of the working principle of thermal diodes based on thermal stress and thermal contact conductance—thermal semiconductors. Int J Heat Mass Transf 73:354–357

    Article  Google Scholar 

  4. Roberts NA, Walker DG (2011) Computational study of thermal rectification from nanostructured interfaces. J Heat Transf 133:092401. https://doi.org/10.1115/1.4003960

    Article  Google Scholar 

  5. Xu W, Zhang G, Li B (2014) Interfacial thermal resistance and thermal rectification between suspended and encased single layer graphene. J Appl Phys 116:134303. https://doi.org/10.1063/1.4896733

    Article  Google Scholar 

  6. Kobayashi W, Teraoka Y, Terasaki I (2009) An oxide thermal rectifier. Appl Phys Lett 95:171905. https://doi.org/10.1063/1.3253712

    Article  Google Scholar 

  7. Terraneo M, Peyrard M, Casati G (2002) Controlling the energy flow in nonlinear lattices: a model for a thermal rectifier. Phys Rev Lett 88:094302. https://doi.org/10.1103/PhysRevLett.88.094302

    Article  Google Scholar 

  8. Li B, Wang L, Casati G (2004) Thermal diode: rectification of heat flux. Phys Rev Lett 93:184301. https://doi.org/10.1103/PhysRevLett.93.184301

    Article  Google Scholar 

  9. Peyrard M (2006) The design of a thermal rectifier. Europhys Lett 76:49–55

    Article  Google Scholar 

  10. Pereira E (2010) Thermal rectification in quantum graded mass systems. Phys Lett A 374:1933–1937

    Article  Google Scholar 

  11. Pereira E (2011) Sufficient conditions for thermal rectification in general graded materials. Phys Rev E 83:031106. https://doi.org/10.1103/PhysRevE.83.031106

    Article  Google Scholar 

  12. Wang J, Pereira E, Casati G (2012) Thermal rectification in graded materials. Phys Rev E 86:010101. https://doi.org/10.1103/PhysRevE.86.010101

    Article  Google Scholar 

  13. Garcia-Garcia KI, Alvarez-Quintana J (2014) Thermal rectification assisted by lattice transitions. Int J Therm Sci 81:76–83

    Article  Google Scholar 

  14. Huang J, Li Q, Zheng Z, Xuan Y (2013) Thermal rectification based on thermochromic materials. Int J Heat Mass Transf 67:575–580

    Article  Google Scholar 

  15. Lee J, Varshney V, Roy AK, Ferguson JB, Farmer BL (2012) Thermal rectification in three-dimensional asymmetric nanostructure. Nano Lett 12:3491–3496

    Article  Google Scholar 

  16. Loh GC, Baillargeat D (2014) A boron nitride nanotube peapod thermal rectifier. J Appl Phys 115:243501. https://doi.org/10.1063/1.4879828

    Article  Google Scholar 

  17. Yang N, Zhang G, Li B (2009) Thermal rectification in asymmetric graphene ribbons. Appl Phys Lett 95:033107. https://doi.org/10.1063/1.3183587

    Article  Google Scholar 

  18. Hu J, Ruan X, Chen YP (2009) Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study. Nano Lett 9:2730–2735

    Article  Google Scholar 

  19. Hu M, Keblinski P, Li B (2008) Thermal rectification at silicon-amorphous polyethylene interface. Appl Phys Lett 92:211908. https://doi.org/10.1063/1.2937834

    Article  Google Scholar 

  20. Zhang L, Yan Y, Wu C-Q, Wang J-S, Li B (2009) Reversal of thermal rectification in quantum systems. Phys Rev B 80:172301. https://doi.org/10.1103/PhysRevB.80.172301

    Article  Google Scholar 

  21. Roberts NA, Walker DG (2011) A review of thermal rectification observations and models in solid materials. Int J Therm Sci 50:648–662

    Article  Google Scholar 

  22. Tso CY, Chao CYH (2016) Solid-state thermal diode with shape memory alloys. Int J Heat Mass Transf 93:605–611

    Article  Google Scholar 

  23. Alaghemandi M, Leroy F, Algaer E, Bohm MC, Muller-Plathe F (2010) Thermal rectification in mass-graded nanotubes: a model approach in the framework of reverse non-equilibrium molecular dynamics simulations. Nanotechnology 21:75704. https://doi.org/10.1088/0957-4484/21/7/075704

    Article  Google Scholar 

  24. Chang CW, Okawa D, Majumdar A, Zettl A (2006) Solid-state thermal rectifier. Science 314:1121–1124

    Article  Google Scholar 

  25. Liu Y-Y, Zhou W-X, Tang L-M, Chen K-Q (2014) An important mechanism for thermal rectification in graded nanowires. Appl Phys Lett 105:203111. https://doi.org/10.1063/1.4902427

    Article  Google Scholar 

  26. Jeżowski A, Rafalowicz J (1978) Heat flow asymmetry on a junction of quartz with graphite. Phys Status Solidi 47:229–232

    Article  Google Scholar 

  27. Balcerek K, Tyc T (1978) Heat flux rectification in tin-α-brass system. Phys Status Solidi 47:K125–K128

    Article  Google Scholar 

  28. Dames C (2009) Solid-state thermal rectification with existing bulk materials. J Heat Transf 131:061301. https://doi.org/10.1115/1.3089552

    Article  Google Scholar 

  29. Tian H, Xie D, Yang Y, Ren TL, Zhang G, Wang YF, Zhou CJ, Peng PG, Wang LG, Liu LT (2012) A novel solid-state thermal rectifier based on reduced graphene oxide. Sci Rep 2:523. https://doi.org/10.1038/srep00523

    Article  Google Scholar 

  30. He J, Zhao LD, Zheng JC, Doak JW, Wu H, Wang HQ, Lee Y, Wolverton C, Kanatzidis MG, Dravid VP (2013) Role of sodium doping in lead chalcogenide thermoelectrics. J Am Chem Soc 135:4624–4627

    Article  Google Scholar 

  31. He J, Girard SN, Zheng JC, Zhao L, Kanatzidis MG, Dravid VP (2012) Strong phonon scattering by layer structured pbsns(2) in pbte based thermoelectric materials. Adv Mater 24:4440–4444

    Article  Google Scholar 

  32. He J, Sootsman JR, Girard SN, Zheng JC, Wen J, Zhu Y, Kanatzidis MG, Dravid VP (2010) On the origin of increased phonon scattering in nanostructured pbte based thermoelectric materials. J Am Chem Soc 132:8669–8675

    Article  Google Scholar 

  33. He J, Blum ID, Wang HQ, Girard SN, Doak J, Zhao LD, Zheng JC, Casillas G, Wolverton C, Jose-Yacaman M, Seidman DN, Kanatzidis MG, Dravid VP (2012) Morphology control of nanostructures: Na-doped pbte-pbs system. Nano Lett 12:5979–5984

    Article  Google Scholar 

  34. Rong H, Lin W-Q, Zheng J-C, Lu M (2014) Thermal characterization of a bridge-link carbon nanotubes array used as a thermal adhesive. Int J Adhes Adhes 49:58–63

    Article  Google Scholar 

  35. Zheng J-C, Zhang L, Kretinin AV, Morozov SV, Wang YB, Wang T, Li X-J, Ren F, Zhang J, Lu C-Y, Chen J-C, Lu M, Wang H-Q, Geim AK, Novoselov KS (2016) High thermal conductivity of hexagonal boron nitride laminates. 2D Mater 3:011004

    Article  Google Scholar 

  36. Zhang L, Li N, Wang H-Q, Zhang Y, Ren F, Liao X-X, Li Y-P, Wang X-D, Huang Z, Dai Y, Yan H, Zheng J-C (2017) Tuning the thermal conductivity of strontium titanate through annealing treatments. Chin Phys B 26:016602

    Article  Google Scholar 

  37. Go DB, Sen M (2010) On the condition for thermal rectification using bulk materials. J Heat Transf 132:124502

    Article  Google Scholar 

  38. An T-C, Lin C-A, Chiu C-H, Liu C-H, Hu P-T (2008) Thermal retention performance and gas removal effect of bamboo charcoal/PET blended fibers. Polym Plast Technol Eng 47(9):895–901

    Article  Google Scholar 

  39. Yang L, H-b Liu, D-s Zhang, Liu J-Z, He Y-D (2011) Electron microscopy study on microstructure of bamboo charcoal. J Chin Electr Microsc Soc 30(2):138–141

    Google Scholar 

  40. Mannan S, Paul Knox J, Basu S (2017) Correlations between axial stiffness and microstructure of a species of bamboo. R Soc Open Sci 4:160412. https://doi.org/10.1098/rsos.160412

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11335006, 51661135011 and 11704317) and Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund (the second phase) under Grant No. U1501501.

Author information

Authors and Affiliations

Authors

Contributions

J.-C.Z. designed research, J.-C.Z., X.J.L., N.L., F.R., K.H.W., H.Q.W., and C.L.K. performed research, J.-C.Z., X.J.L., N.L., F.R., M.W. and H.Q.W., analysed data, and J.-C.Z., X.J.L., M.W., H.Q.W. wrote the paper.

Corresponding author

Correspondence to Jin-Cheng Zheng.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, XJ., Li, N., Ren, F. et al. Route to design highly efficient thermal rectifiers from microstructured cellular biomorphic materials. J Mater Sci 53, 13955–13965 (2018). https://doi.org/10.1007/s10853-018-2462-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2462-6

Keywords

Navigation