Skip to main content
Log in

Hydrogen-trapping mechanisms of TIG-welded 316L austenitic stainless steels

  • Metals
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The interaction of hydrogen with various tungsten-inert-gas-welded austenitic stainless steels’ (AUSS) microstructure is studied by means of desorption/absorption analysis and microstructure observations. One of the limitations of welding is created by the presence of hydrogen in the weld, which can shorten the steel’s service life. The local hydrogen concentration, trapping, and its distribution along the welded samples were studied by thermal desorption spectrometry and were supported by X-ray diffraction (XRD) and electronic microstructural observations. Hydrogen content demonstrated a dependence on the welding zone. It was found that hydrogen distribution, and accepted microstructure during welding, played a significant role in the trapping mechanism of 316L AUSS. XRD analysis revealed residual stresses which were caused due to the presence of hydrogen in γ-phase. It was shown that the austenite microconstituents inside 316L can have a crucial effect in preventing hydrogen-assisted cracking phenomenon. The effects of AUSS microstructure on hydrogen absorption and desorption behavior are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. Davis JR (1999) Stainless steels, 3rd edn. ASM international, Ohaio

    Google Scholar 

  2. Lacombe P, Baroux B, Beranger G (1993) Stainless steels, 1st edn. Les éditions de physique

  3. Kou S (2003) Welding metallurgy, 2nd edn. Wiley, New York

    Google Scholar 

  4. Tal-Gutelmacher E, Eliezer D, Boellinghaus T (2007) Hydrogen behavior in GTA welded Ti–6Al–4V and Beta-21S aerospace applicative titanium alloys. Mater Sci Forum 546–549:1413–1420

    Article  Google Scholar 

  5. Tusek J, Suban M (2000) Experimental research of the effect of hydrogen in argon as a shielding gas in arc welding of high-alloy stainless steel. Int J Hydrog Energy 25:369–376. https://doi.org/10.1016/S0360-3199(99)00033-6

    Article  Google Scholar 

  6. Robertson IM, Sofronis P, Nagao A et al (2015) Hydrogen embrittlement understood. Metall Mater Trans B 46:1085–1103

    Article  Google Scholar 

  7. Dayal RK, Parvathavarthini N (2003) Hydrogen embrittlement in power plant steels. Sadhana 28:431–451

    Article  Google Scholar 

  8. Silverstein R, Eliezer D (2017) Mechanisms of hydrogen trapping in austenitic, duplex, and super martensitic stainless steels. J Alloys Compd 720:451–459

    Article  Google Scholar 

  9. Presouyre GM (1980) Trap theory of hydrogen embrittlement. Acta Metall 28:895–911

    Article  Google Scholar 

  10. Mcnabb A, Foster PK (1963) A new analysis of the diffusion of hydrogen in iron and ferritic steels. Trans Metall Soc AIME 227:618–627

    Google Scholar 

  11. Maroef I, Olson DL, Eberhart M, Edwards GR (2002) Hydrogen trapping in ferritic steel weld metal. Int Mater Rev 47:191–223. https://doi.org/10.1179/095066002225006548

    Article  Google Scholar 

  12. Silverstein R, Eliezer D, Glam B et al (2015) Evaluation of hydrogen trapping mechanisms during performance of different hydrogen fugacity in a lean duplex stainless steel. J Alloys Compd 648:601–608. https://doi.org/10.1016/j.jallcom.2015.07.029

    Article  Google Scholar 

  13. Silverstein R, Eliezer D (2015) Hydrogen trapping mechanism of different duplex stainless steels alloys. J Alloys Compd 644:280–286. https://doi.org/10.1016/j.jallcom.2015.04.176

    Article  Google Scholar 

  14. Silverstein R, Eliezer D (2016) Hydrogen trapping energy levels and hydrogen diffusion at high and low strain rates (~105 s−1 and 10−7 s−1) in lean duplex stainless steel. Mater Sci Eng A 674:419–427. https://doi.org/10.1016/j.msea.2016.08.019

    Article  Google Scholar 

  15. Eliezer D, Nissim Y, Kannengießer T (2010) Effects of shielding with various hydrogen-argon mixtures on supermartensitic stainless steel TIG welds. Mater Test Join Technol 52:306–315

    Article  Google Scholar 

  16. Boellinghaus T, Eliezer D (2016) Hydrogen trapping in supermartensitic stainless steel TIG wleds. In: Boellinghaus T, Lippold JC, Cross CE (eds) Cracking phenomena in welds IV. pp 457–472

  17. Park YD, Maroef IS, Landau A, Olson DL (2002) Retained austenite as a hydrogen trap in steel welds. Weld J 81:27–35

    Google Scholar 

  18. Lensing CA, Park YD, Maroef IS, Olson DL (2004) Yttrium hydrogen trapping to manage hydrogen in HSLA steel welds. Weld J 83:254–255

    Google Scholar 

  19. Maroef I, Olson DL (2000) Fundamental study of hydrogen trapping in steel weld metal. In: Joining of advanced and specialty materials II. ASM International, pp 227–235

  20. Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71

    Article  Google Scholar 

  21. Lee S, Lee J (1986) The trapping and transport phenomena of hydrogen in nickel. Metall Trans A 17:181–187

    Article  Google Scholar 

  22. Silverstein R, Glam B, Eliezer D et al (2018) Dynamic deformation of hydrogen charged austenitic-ferritic steels: hydrogen trapping mechanisms, and simulations. J Alloys Compd 731:1238–1246. https://doi.org/10.1016/j.jallcom.2017.10.142

    Article  Google Scholar 

  23. Tal-Gutelmacher E, Eliezer D, Abramov E (2007) Thermal desorption spectroscopy (TDS)—application in quantitative study of hydrogen evolution and trapping in crystalline and non-crystalline materials. Mater Sci Eng A 445–446:625–631. https://doi.org/10.1016/j.msea.2006.09.089

    Article  Google Scholar 

  24. Mahajan S, Chin GY (1973) Formation of annealing twins in f.c.c. crystals. Acta Metall 21:1353–1363

    Article  Google Scholar 

  25. Silverstein R, Eliezer D, Glam B et al (2014) Influence of hydrogen on microstructure and dynamic strength of lean duplex stainless steel. J Mater Sci 49:4025–4031. https://doi.org/10.1007/s10853-014-8075-9

    Article  Google Scholar 

  26. Tal-Gutelmacher E, Eliezer D (2005) Hydrogen cracking in titanium-based alloys. J Alloys Compd 404–406:621–625

    Article  Google Scholar 

  27. Yagodzinskyy Y, Todoshchenko O, Papula S, Ha H (2011) Hydrogen solubility and diffusion in austenitic stainless steels studied with thermal desorption spectroscopy. Steel Res Int 82:20–25. https://doi.org/10.1002/srin.201000227

    Article  Google Scholar 

  28. Turnbull A, Hutchings RB, Ferriss DH (1997) Modelling of thermal desorption of hydrogen from metals. Mater Sci Eng 238:317–328

    Article  Google Scholar 

  29. Bar R, Dabah E, Eliezer D et al (2011) The influence of hydrogen on thermal desorption processes in structural materials. Procedia Eng. https://doi.org/10.1016/j.proeng.2011.04.604

    Google Scholar 

  30. Silverstein R, Eliezer D, Glam B et al (2014) Dynamic strength of duplex steel in the presence of hydrogen. In: Steely hydrogen conference, pp 662–666

  31. Kamilyan M, Silverstein R, Eliezer D (2017) Hydrogen trapping and hydrogen embrittlement of Mg alloys. J Mater Sci 52:11091–11100. https://doi.org/10.1007/s10853-017-1268-2

    Article  Google Scholar 

  32. Silverstein R, Eliezer D, Glam B (2017) Hydrogen effect on duplex stainless steels at very high strain rates. Energy Procedia 107:199–204

    Article  Google Scholar 

  33. Silverstein R, Glam B, Eliezer D et al (2015) The influence of inclusions and hydrogen on the microstructure and dynamic strength of materials. In: AIP SCCM (shock compression of condensed matter)

  34. Kim Y, Kim Y, Kim D et al (2011) Effects of hydrogen diffusion on the mechanical properties of austenite 316L steel at ambient temperature. Mater Trans 52:507–513

    Article  Google Scholar 

  35. Silverstein R, Eliezer D (2016) Influences of hydrogen and textural anisotropy on the microstructure and mechanical properties of duplex stainless steel at high strain rate (~105 s−1). J Mater Sci 51:10442–10451. https://doi.org/10.1007/s10853-016-0264-2

    Article  Google Scholar 

  36. Takasaki A, Furuya Y, Ojima K, Taneda Y (1995) Hydride dissociation and hydrogen evolution behavior of electrochemically charged pure titanium. J Alloys Compd 224:269–273

    Article  Google Scholar 

  37. Eliezer D, Tal-Gutelmacher E, Cross CE, Boellinghaus T (2006) Hydrogen trapping in?-21S titanium alloy. Mater Sci Eng A 421:200–207

    Article  Google Scholar 

  38. Silverstein R, Eliezer D (2017) Effects of residual stresses on hydrogen trapping in duplex stainless steels. Mater Sci Eng, A 684:64–70

    Article  Google Scholar 

  39. Silverstein R, Sobol O, Boellinghaus T et al (2017) Hydrogen behavior in SAF 2205 duplex stainless steel. J Alloys Compd 695:2689–2695

    Article  Google Scholar 

  40. Ono K, Meshii M (1992) Hydrogen detrapping from grain boundaries and dislocations in high purity iron. Acta Metall Mater 40:1357–1364

    Article  Google Scholar 

  41. Sofronis P, Dadfarnia M, Novak P et al (2009) A combined applied mechanics/materials science approach toward quantifying the role of hydrogen on material degradation. In: Proceedings of 12th international conference on fracture, pp 1–10

  42. Eliezer D, Tal-Gutelmacher E, Cross CE, Boellinghaus T (2006) Hydrogen absorption and desorption in a duplex-annealed Ti-6Al-4V alloy during exposure to different hydrogen-containing environments. Mater Sci Eng, A 433:298–304. https://doi.org/10.1016/j.msea.2006.06.088

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Silverstein.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silverstein, R., Eliezer, D. & Boellinghaus, T. Hydrogen-trapping mechanisms of TIG-welded 316L austenitic stainless steels. J Mater Sci 53, 10457–10468 (2018). https://doi.org/10.1007/s10853-018-2349-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2349-6

Keywords

Navigation