Skip to main content
Log in

Hydrogen trapping and hydrogen embrittlement of Mg alloys

  • Metals
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this paper, the effect of local hydrogen concentration and distribution in magnesium (Mg) alloys is studied in regard to hydrogen embrittlement. Quantitative studies of hydrogen trapping sites and release behavior in AZ91 and AZ31 magnesium alloys are being studied by thermal desorption analysis (TDS). The trapping energy levels are used to discuss the embrittlement mechanisms due to their control on hydrogen availability. The embrittlement process is caused by hydrogen in combination with residual or applied stress and can lead to the mechanical degradation of a material. The susceptibility of Mg alloys is directly related to the role of the second phases controlling the hydrogen trapping mechanisms. In this work, we examine the effect of Mg’s microstructure on the magnesium hydride (MgH2) reaction, referred to as hydriding, and its decomposition, referred to as dehydriding. The MgH2 compound was investigated in regard to two aspects: first, as the main source for controlling the hydrogen dehydriding process; second, as a hydrogen trapping site for preventing hydrogen embrittlement process. The TDS analysis was used to study the hydrogen trapping mechanisms by studying the traps’ density and distribution and relating them to potential lattice defects. The TDS analysis revealed a certain hydrogen concentration evolving near β-Mg17Al12 phase, accompanied by H2 desorption at a temperature range between ~200 and 300 °C. It is proposed that β-phase plays a fundamental role in the dehydriding process, and this response is a crucial step in effecting the embrittlement behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Eliezer D, Alves H (2002) Corrosion and oxidation of magnesium alloys. Handb Mater Sel 267–289

  2. For S, Distributors E (2000) Magnesium alloys development toward the 21st century. Mater Sci Forum 350–351:19–30. doi:10.4028/www.scientific.net/MSF.350

    Google Scholar 

  3. Soenke S, Horst EF (2006) Automotive applications in Europe. Magnes Technol 499–569

  4. Kappes M, Iannuzzi M, Carranza RM (2013) Hydrogen embrittlement of magnesium and magnesium alloys: a review. J Electrochem Soc 160:168–178. doi:10.1149/2.023304jes

    Article  Google Scholar 

  5. Yuasa M, Nishihara D, Mabuchi M, Chino Yasumasa (2012) Hydrogen embrittlement in a magnesium grain boundary: a first-principles study. J Phys Condens 24:1–9. doi:10.1088/0953-8984/24/8/085701

    Google Scholar 

  6. Song RG, Dietzel W, Zhang BJ et al (2004) Stress corrosion cracking and hydrogen embrittlement of an Al-Zn-Mg-Cu alloy. Acta Mater 52:4727–4743. doi:10.1016/j.actamat.2004.06.023

    Article  Google Scholar 

  7. Robertson IM, Sofronis P, Nagao A et al (2015) Hydrogen Embrittlement Understood. Metall Mater Trans B 46:1085–1103

    Article  Google Scholar 

  8. Minkovitz E, Talianker M, Eliezer D (1981) TEM investigation of hydrogen induced ε-hcp-martensite in 316L-type stainless steel. J Mater Sci 16:3506–3508. doi:10.1007/BF00586316

    Article  Google Scholar 

  9. Scully, JR, Young, GA, Smith, SW (2012) Hydrogen embrittlement of aluminum and aluminum-based alloys. Gaseoues Hydrog embrittlement Mater Energy Technol 707

  10. Silverstein R, Eliezer D (2016) Hydrogen trapping energy levels and hydrogen diffusion at high and low strain rates (~ 10 5 s−1 and 10−7 s−1) in lean duplex stainless steel. Mater Sci Eng A 674:419–427. doi:10.1016/j.msea.2016.08.019

    Article  Google Scholar 

  11. Silverstein R, Eliezer D, Glam B et al (2015) Evaluation of hydrogen trapping mechanisms during performance of different hydrogen fugacity in a lean duplex stainless steel. J Alloys Compd 648:601–608. doi:10.1016/j.jallcom.2015.07.029

    Article  Google Scholar 

  12. Sofronis P, Dadfarnia M, Novak P, et al (2009) A combined applied mechanics/materials science approach toward quantifying the role of hydrogen on material degradation. In: Proc. 12th int. conf. fract. Ottawa, Canada, pp 1–10

  13. Tal-Gutelmacher E, Eliezer D (2005) High fugacity hydrogen effects at room temperature in titanium based alloys. J Alloys Compd 404–406:613–616. doi:10.1016/j.jallcom.2004.12.172

    Article  Google Scholar 

  14. Choo WY, Lee JY (1982) Hydrogen trapping phenomena in carbon steel. J Mater Sci 17:1930–1938. doi:10.1007/BF00540409

    Article  Google Scholar 

  15. Abramov E, Eliezer D (1988) Trapping of hydrogen in helium-implanted metals. J Mater Sci Lett 7:108–110. doi:10.1007/BF01730586

    Article  Google Scholar 

  16. Shang CX, Bououdina M, Song Y, Guo ZX (2004) Mechanical alloying and electronic simulations of (MgH2 + M) systems (M = Al, Ti, Fe, Ni, Cu and Nb) for hydrogen storage. Int J Hydrogen Energy 29:73–80. doi:10.1016/S0360-3199(03)00045-4

    Article  Google Scholar 

  17. Bouaricha S, Dodelet JP, Guay D et al (2000) Hydriding behavior of Mg-Al and leached Mg-Al compounds prepared by high-energy ball-milling. J Alloys Compd 297:282–293. doi:10.1016/S0925-8388(99)00612-X

    Article  Google Scholar 

  18. Renner J, Grabke HJ (1979) Determination of diffusion coefficients in the hydriding of alloys. Chem Informationsd. doi:10.1002/chin.197903007

    Google Scholar 

  19. Ben-Haroush M, Ben-Hamu G, Eliezer D, Wagner L (2008) The relation between microstructure and corrosion behavior of AZ80 Mg alloy following different extrusion temperatures. Corros Sci 50:1766–1778. doi:10.1016/j.corsci.2008.03.003

    Article  Google Scholar 

  20. Ben-Hamu G, Eliezer D, Kaya A et al (2006) Microstructure and corrosion behavior of Mg-Zn-Ag alloys. Mater Sci Eng A 435–436:579–587. doi:10.1016/j.msea.2006.07.109

    Article  Google Scholar 

  21. Nunes R, Adams JH, Ammons M, Al E (2001) Properties and selection: nonferrous alloys ans special- purpose materials. ASM Handb 2:127–425

  22. Silverstein R, Eliezer D, Glam B et al (2014) Influence of hydrogen on microstructure and dynamic strength of lean duplex stainless steel. J Mater Sci 49:4025–4031. doi:10.1007/s10853-014-8075-9

    Article  Google Scholar 

  23. Crank J (1975) The mathematics of diffusion, 2nd edn. Clarendon, Oxford

    Google Scholar 

  24. Atrens A, Winzer N, Song G et al (2006) Stress corrosion cracking and hydrogen diffusion in magnesium. Adv Eng Mater 8:749–751. doi:10.1002/adem.200600050

    Article  Google Scholar 

  25. Silverstein R, Eliezer D (2015) Hydrogen trapping mechanism of different duplex stainless steels alloys. J Alloys Compd 644:280–286. doi:10.1016/j.jallcom.2015.04.176

    Article  Google Scholar 

  26. Silverstein R, Sobol O, Boellinghaus T et al (2016) Hydrogen behavior in SAF 2205 duplex stainless steel. J Alloys Compd 659:2689–2695. doi:10.1016/j.jallcom.2016.11.184

    Google Scholar 

  27. Lee S, Lee J (1986) The trapping and transport phenomena of hydrogen in nickel. Metall Trans A 17:181–187

    Article  Google Scholar 

  28. Turnbull A, Hutchings RB, Ferriss DH (1997) Modelling of thermal desorption of hydrogen from metals. Mater Sci Eng 238:317–328

    Article  Google Scholar 

  29. Stampfer JF, Holley CE, Suttle JF (1960) The magnesium-hydrogen system. J Am Chem Soc 82:3504–3508. doi:10.1021/ja01499a006

    Article  Google Scholar 

  30. Chen J, Ai M, Wang J et al (2009) Formation of hydrogen blister on AZ91 magnesium alloy during cathodic charging. Corros Sci 51:1197–1200. doi:10.1016/j.corsci.2009.02.020

    Article  Google Scholar 

  31. Chen J, Wang J, Han E et al (2008) States and transport of hydrogen in the corrosion process of an AZ91 magnesium alloy in aqueous solution. Corros Sci 50:1292–1305. doi:10.1016/j.corsci.2008.01.028

    Article  Google Scholar 

  32. Schober T (1981) The magnesium-hydrogen system: transmission electron-microscopy. Metall Trans A 12A:951–957. doi:10.1007/bf02643475

    Article  Google Scholar 

  33. Ghali E (2011) Magnesium and magnesium alloys. In: Winston R (ed) Uhlig’s corrosion handbook, 3rd edn. Wiley, New York, pp 809–836

    Chapter  Google Scholar 

  34. Smith WF, Hashemi J (2009) Foundation of materials science and engineering, Chap 8, 4th edn. pp 318–321

  35. Turnbull A, Hutchings RB (1994) Analysis of hydrogen atom transport in a two-phase alloy. Mater Sci Eng A 177:161–171. doi:10.1016/0921-5093(94)90488-X

    Article  Google Scholar 

  36. Eliezer D, Tal-Gutelmacher E, Cross CE, Boellinghaus T (2006) Hydrogen trapping in β-21S titanium alloy. Mater Sci Eng A 421:200–207. doi:10.1016/j.msea.2006.01.067

    Article  Google Scholar 

  37. Tal-Gutelmacher E, Eliezer D, Abramov E (2007) Thermal desorption spectroscopy (TDS)—Application in quantitative study of hydrogen evolution and trapping in crystalline and non-crystalline materials. Mater Sci Eng A 445–446:625–631. doi:10.1016/j.msea.2006.09.089

    Article  Google Scholar 

  38. Laine ESU (1978) A high-speed determination of the volume fraction of ferrite in austenitic stainless steel by EDXRD. J Phys F Met Phys 8:1343–1348. doi:10.1088/0305-4608/8/7/007

    Article  Google Scholar 

  39. Chino Y, Nishihara D, Ueda T, Mabuchi M (2011) Effects of hydrogen on the mechanical properties of pure magnesium. Mater Trans 52:1123–1126. doi:10.2320/matertrans.MC201009

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Silverstein.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamilyan, M., Silverstein, R. & Eliezer, D. Hydrogen trapping and hydrogen embrittlement of Mg alloys. J Mater Sci 52, 11091–11100 (2017). https://doi.org/10.1007/s10853-017-1268-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1268-2

Keywords

Navigation