Skip to main content
Log in

Schiff base-assisted surface patterning of polylactide–zinc oxide films: generation, characterization and biocompatibility evaluation

  • Biomaterials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A novel route for obtaining ordered microporous polylactide films has been explored using zinc oxide and a Schiff base. The SEM images reveal that the water vapor condensation near the surface of a polylactide solution containing a synthesized Schiff base and zinc oxide results in well-dispersed water droplets, which upon subsequent evaporation can assist breath figure patterning. The generation of ordered micropores at the film surface is attributed to the interaction between the surface +ve charge of well-dispersed zinc oxide particles and the δ-bearing water droplets from moisture. The potential for biocompatible applications has been revealed for the membranes by the cell viability assay against mice fibroblast (L929) cells and the hemocompatibility assay. The findings suggest an efficient route for the development of porous biodegradable polylactide membranes for various applications, typically for wound dressing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  1. Barba F, Callejas P (2006) Calcium phosphate silicate ceramics for heavy metal immobilization and antibacterial activity in waste water. J Mater Sci 41:5227–5230. https://doi.org/10.1007/s10853-006-0440-x

    Article  Google Scholar 

  2. Xu T (2005) Ion exchange membranes: state of their development and perspective. J Membr Sci 263:1–29

    Article  Google Scholar 

  3. Bini TB, Gao S, Wang S, Ramakrishna S (2006) Poly(l-lactide-co-glycolide) biodegradable microfibers and electrospun nanofibers for nerve tissue engineering: an in vitro study. J Mater Sci 41:6453–6459. https://doi.org/10.1007/s10853-006-0714-3

    Article  Google Scholar 

  4. Tran PA, Biswas DP, O’Connor AJ (2014) Simple one-step method to produce titanium dioxide–polycaprolactone composite films with increased hydrophilicity, enhanced cellular interaction and improved degradation for skin tissue engineering. J Mater Sci 49:6373–6382. https://doi.org/10.1007/s10853-014-8364-3

    Article  Google Scholar 

  5. Liu N, Pan J, Miao YE, Liu T, Xu F, Sun H (2014) Electrospinning of poly (ε-caprolactone-co-lactide)/Pluronic blended scaffolds for skin tissue engineering. J Mater Sci 49:7253–7262. https://doi.org/10.1007/s10853-014-8432-8

    Article  Google Scholar 

  6. Hou QP, Grijpma DW, Feijen J (2003) Porous polymeric structures for tissue engineering prepared by a coagulation, compression moulding and salt leaching technique. Biomaterials 24:1937–1947

    Article  Google Scholar 

  7. Harris LD, Kim BS, Mooney DJ (1998) Open pore biodegradable matrices formed with gas foaming. J Biomed Mater Res 42:396–402

    Article  Google Scholar 

  8. Lo H, Ponticiello MS, Leong KW (1995) Fabrication of controlled release biodegradable foams by phase separation. Tissue Eng 1:15–28

    Article  Google Scholar 

  9. Borenstein JT, Terai H, King KR, Weinberg EJ, Kaazempur-Mofrad MR, Vacanti JP (2002) Microfabrication technology for vascularized tissue engineering. Biomed Microdevices 4:167–175

    Article  Google Scholar 

  10. Park JS, Lee SH, Han TH, Kim SO (2007) Hierarchically ordered polymer films by templated organization of aqueous droplets. Adv Funct Mater 17:2315–2320

    Article  Google Scholar 

  11. Wang B, He T, Liu L, Gao C (2005) Poly(ethylene glycol) micro-patterns as environmentally sensitive template for selective or non-selective adsorption. Colloids Surf B 46:169–174

    Article  Google Scholar 

  12. Guessasma S, Oyen M (2016) Virtual design of electrospun-like gelatin scaffolds: the effect of three-dimensional fibre orientation on elasticity behavior. Soft Matter 12:602–613

    Article  Google Scholar 

  13. Guessasma S, Zhang W, Zhu J, Belhabib S, Nouri H (2015) Challenges of additive manufacturing technologies from an optimisation perspective. Int J Simul Multisci Des Optim 6:A9

    Article  Google Scholar 

  14. Mikos AG, Thorsen AJ, Czerwonka LA, Bao Y, Langer R, Winslow DN, Vacanti JP (1994) Preparation and characterization of poly(l-lactic acid) foams. Polymer 35:1068–1077

    Article  Google Scholar 

  15. Mikos AG, Sarakinos G, Leite SM, Vacant JP, Langer R (1993) Laminated three-dimensional biodegradable foams for use in tissue engineering. Biomaterials 14:323–330

    Article  Google Scholar 

  16. Mooney DJ, Baldwin DF, Suh NP, Vacanti JP, Langer R (1996) Novel approach to fabricate porous sponges of poly(d, l-lactic-co-glycolic acid) without the use of organic solvents. Biomaterials 17:1417–1422

    Article  Google Scholar 

  17. Yoon JJ, Park TG (2001) Degradation behaviors of biodegradable macroporous scaffolds prepared by gas foaming of effervescent salts. J Biomed Mater Res 55:401–408

    Article  Google Scholar 

  18. Schugens C, Maquet V, Grandfils C, Jerome R, Teyssie P (1996) Polylactide macroporous biodegradable implants for cell transplantation. II. Preparation of polylactide foams by liquid–liquid phase separation. J Biomed Mater Res 30:449–461

    Article  Google Scholar 

  19. Schugens C, Maquet V, Grandfils C (1996) Biodegradable and macroporous polylactide implants for cell transplantation: 1. Preparation of macroporous polylactide supports by solid–liquid phase separation. Polymer 37:1027–1038

    Article  Google Scholar 

  20. Nam YS, Park TG (1999) Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation. J Biomed Mater Res 47:8–17

    Article  Google Scholar 

  21. Valente TA, Silva DM, Gomes PS, Fernandes MH, Santos JD, Sencadas V (2016) Effect of sterilization methods on electrospun poly(lactic acid) (PLA) fiber alignment for biomedical applications. ACS Appl Mater Interfaces 8:3241–3249

    Article  Google Scholar 

  22. Bognitzki M, Czado W, Frese T, Schaper A, Hellwig M, Steinhart M, Greiner A, Wendorff JH (2001) Nanostructured fibers via electrospinning. Adv Mater 13:70–72

    Article  Google Scholar 

  23. Kim SS, Utsunomiya H, Koski JA, Wu BM, Cima MJ, Sohn J et al (1998) Survival and function of hepatocytes on a novel three-dimensional synthetic biodegradable polymer scaffold with an intrinsic network of channels. Ann Surg 228:8–13

    Article  Google Scholar 

  24. Zeltinger J, Sherwood JK, Graham DA, Mueller R, Griffith LG (2001) Effect of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition. Tissue Eng 7:557–572

    Article  Google Scholar 

  25. Hiroshi S, Ito E, Tanaka M, Yamamoto S, Shimomura M (2006) Effect of honeycomb film on protein adsorption, cell adhesion and proliferation. Colloids Surf A 284–285:548–551

    Google Scholar 

  26. Kurono N, Shimada R, Ishihara T, Shimomura M (2002) Fabrication and optical property of self-organized honeycomb-patterned films. Mol Cryst Liq Cryst 377:285–288

    Article  Google Scholar 

  27. Ghannam L, Garay H, François J, Billon L (2007) New polymeric materials with interferential optical properties. Macromol Chem Phys 208:1469–1479

    Article  Google Scholar 

  28. Li H, Jia Y, Du M, Fei J, Zhao J, Cui Y, Li J (2013) Self-organization of honeycomb-like porous TiO2 films by means of the breath-figure method for surface modification of titanium implants. Chem Eur J 19:5306–5313

    Article  Google Scholar 

  29. Ma Y, Zhou M, Walter S, Liang J, Chen Z, Wu L (2014) Selective adhesion and controlled activity of yeast cells on honeycomb-patterned polymer films via a microemulsion approach. Chem Commun 50:15882–15885

    Article  Google Scholar 

  30. Kulkarni RK, Pani KC, Neuman C, Leonard F (1966) Polylactic acid for surgical implants. Arch Surg 93:839–843

    Article  Google Scholar 

  31. Cipitria A, Skelton A, Dargaville TR, Dalton PD, Hutmacher DW (2011) Design, fabrication and characterization of PCL electrospun scaffolds—a review. J Mater Chem 21:9419–9453

    Article  Google Scholar 

  32. Ellis MJ, Chaudhuri JB (2007) Poly(lactic-co-glycolic acid) hollow fibre membranes for use as a tissue engineering scaffold. Biotechnol Bioeng 96:177–187

    Article  Google Scholar 

  33. Nguyen T, Ghosh C, Hwang S-G, Tran L, Park JS (2013) Characteristics of curcumin-loaded poly (lactic acid) nanofibers for wound healing. J Mater Sci 48:7125–7133. https://doi.org/10.1007/s10853-013-7527-y

    Article  Google Scholar 

  34. Dhar P, Gaur SS, Soundararajan N, Gupta A, Bhasney S, Milli M, Kumar A, Katiyar V (2017) Reactive extrusion of polylactic acid/cellulose nanocrystal films for food packaging applications: influence of filler type on thermomechanical, rheological, and barrier properties. Ind Eng Chem Res 56:4718–4735

    Article  Google Scholar 

  35. Wang G, Wang L, Mark L, Shaayegan V, Wang G, Li H, Zhao G, Park CB (2018) Ultralow-threshold and lightweight biodegradable porous PLA/ MWCNT with segregated conductive networks for high performance thermal insulation and electromagnetic interference shielding applications. ACS Appl Mater Interfaces 10:1195–1203

    Article  Google Scholar 

  36. Dutta K, Deka R, Das DK (2013) A new on-fluorescent probe for manganese (II) ion. J Fluoresc 23:1173–1178

    Article  Google Scholar 

  37. Lo Rea G, Lopresti F, Petrucci G, Scaffaroa R (2015) A facile method to determine pore size distribution in porous scaffold by using image processing. Micron 76:37–45

    Article  Google Scholar 

  38. Lainioti GC, Bounos G, Voyiatzis GA, Kallitsis JK (2016) Enhanced water vapor transmission through porous membranes based on melt blending of polystyrene sulfonate with polyethylene copolymers and their CNT nanocomposites. Polymers 8:190

    Article  Google Scholar 

  39. Pranoto Y, Salokhe V, Rakshit KS (2005) Physical and antibacterial properties of alginate based edible film incorporated with garlic oil. Food Res Int 38:267–272

    Article  Google Scholar 

  40. Li X, Yang Z, Yang K, Zhou Y, Chen X, Zhang Y, Wang F, Liu Y, Ren L (2009) Self-assembled polymeric micellar nanoparticles as nanocarriers for poorly soluble anticancer drug ethaselen. Nanoscale Res Lett 4:1502–1511

    Article  Google Scholar 

  41. Thankam FG, Muthu J (2014) Influence of physical and mechanical properties of amphiphilic biosynthetic hydrogels on long-term cell viability. J Mech Behav Biomed Mater 35:111–122

    Article  Google Scholar 

  42. Yousif E, Al-Amiery AA, Kadihum A, Kadhum H, Abu Bakar M (2015) Photostabilizing efficiency of PVC in the presence of Schiff bases as photostabilizers. Molecules 20:19886–19899

    Article  Google Scholar 

  43. Srinivasarao M, Collings D, Philips A, Patel S (2001) Three-dimensionally ordered array of air bubbles in a polymer film. Science 292:79–83

    Article  Google Scholar 

  44. Zhao BH, Zhang J, Wang XD, Li CX (2006) Water-assisted fabrication of honeycomb structure porous film from poly (l-lactide). J Mater Chem 16:509–513

    Article  Google Scholar 

  45. Horino M, Nishizawa M, Kasei M (1999) Dispersion of ultraviolet intercepting moisture-retaining agent and cosmetic article incorporating the dispersion.US patent 5,968,529. Oct. 19, 1999

  46. Watanabe J, Eriguchi T, Ishihara K (2002) Cell adhesion and morphology in porous scaffold based on enantiomeric poly(lactic acid) graft-type phospholipid polymers. Biomacromolecules 3:1375–1383

    Article  Google Scholar 

  47. Kister G, Cassanas G, Vert M (1998) Effects of morphology, conformation and configuration on the IR and Raman spectra of various poly(lactic acid)s. Polymer 39:267–273

    Article  Google Scholar 

  48. Kister G, Cassanas G, Vert M, Pauvert B, Terol A (1995) Vibrational analysis of poly(l-lactic acid). J Raman Spectrosc 26:307–311

    Article  Google Scholar 

  49. Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4:835–864

    Article  Google Scholar 

  50. Salah M, Azizi S, Boukhachem A, Khaldi C, Amlouk M, Lamloumi J (2017) Structural, morphological, optical and photodetector properties of sprayed Li-doped ZnO thin films. J Mater Sci 52:10439–10454. https://doi.org/10.1007/s10853-017-1218-z

    Article  Google Scholar 

  51. Restrepo I, Benito N, Medinam C, Mangalaraja RV, Flores P, Rodriguez-Llamazares S (2017) Development and characterization of polyvinyl alcohol stabilized polylactic acid/ZnO nanocomposites. Mater Res Express 4:105019

    Article  Google Scholar 

  52. Arfat YA, Benjakul S, Prodpran T, Sumpavapol P, Songtipya P (2014) Properties and antimicrobial activity of fish protein isolate/fish skin gelatin film containing basil leaf essential oil and zinc oxide nanoparticles. Food Hydrocoll 41:265–273

    Article  Google Scholar 

  53. Hockberger PE (2002) A history of ultraviolet photobiology for humans, animals and microorganisms. Photochem Photobiol 76:561–579

    Article  Google Scholar 

  54. Tsuji H (2005) Poly(lactide) stereocomplexes: formation, structure, properties, degradation, and applications. Macromol Biosci 5:569–597

    Article  Google Scholar 

  55. Doumbia AS, Vezin H, Ferreira M, Campagne C, Devaux E (2015) Studies of polylactide/zinc oxide nanocomposites: influence of surface treatment on zinc oxide antibacterial activities in textile nanocomposite. J Appl Polym Sci 132:41776–41785

    Article  Google Scholar 

  56. Murariu M, Doumbia A, Bonnaud L, Dechief AL, Paint Y, Ferreira M, Campagne C, Devaux E, Dubois P (2011) High-performance polylactide/ZnO nanocomposites designed for films and fibers with special end-use properties. Biomacromolecules 12:1762–1771

    Article  Google Scholar 

  57. Xu R, Xia H, He W, Li Z, Zhao J, Liu B, Wang Y, Lei Q, Kong Y, Bai Y, Yao Z, Yan R, Li H, Zhan R, Yang S, Luo G, Wu J (2016) Controlled water vapor transmission rate promotes wound-healing via wound re-epithelialization and contraction enhancement. Sci Rep 6:24596

    Article  Google Scholar 

  58. Paszek E, Czyz J, Woźnicka O, Jakubiak D, Wojnarowicz J, Łojkowski W, Stępień E (2012) Zinc oxide nanoparticles impair the integrity of human umbilical vein endothelial cell monolayer in vitro. J Biomed Nanotechnol 8:957–967

    Article  Google Scholar 

  59. Xu X, Chen D, Yi Z, Jiang M, Wang L, Zhou Z, Fan X, Wang Y, Hui D (2013) Antimicrobial mechanism based on H2O2 generation at oxygen vacancies in ZnO crystals. Langmuir 29:5573–5580

    Article  Google Scholar 

  60. Roy S, Savita K, Kishore N, Thomas KH, Chandan KS (2006) Dermal wound healing is subject to redox control. Mol Ther 13:211–220

    Article  Google Scholar 

Download references

Acknowledgements

R.R. acknowledges MHRD, India, for a research fellowship. The authors thankfully acknowledge the help by Dr. A. Sujith and Mr. Manaf O., Materials Research Laboratory, NITC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Unnikrishnan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1451 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rarima, R., Asaletha, R. & Unnikrishnan, G. Schiff base-assisted surface patterning of polylactide–zinc oxide films: generation, characterization and biocompatibility evaluation. J Mater Sci 53, 9943–9957 (2018). https://doi.org/10.1007/s10853-018-2338-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2338-9

Keywords

Navigation