Skip to main content
Log in

Rhombohedral Li2.4Na0.6V2(PO4)3@C nanoplates as high-rate and long-life cathode materials for lithium-ion batteries

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Rhombohedral Li2.4Na0.6V2(PO4)3@C nanoplates are synthesized by a simple sol–gel method. The almost single rhombohedral phase nature of Li2.4Na0.6V2(PO4)3@C along with nanoplate structure leads to high specific capacity and rate capability, and a remarkable cycling performance. As cathode materials for lithium-ion batteries, rhombohedral Li2.4Na0.6V2(PO4)3@C nanoplates deliver a high initial discharge capacity of 121.6 mAh g−1 and an excellent capacity retention of 95.6% after 200 cycles at a rate of 1 C in a potential range of 3.0–4.3 V. Even at a high rate of 10 C, an initial discharge capacity of 115.3 mAh g−1 and a capacity retention of 76.7% after 500 cycles are observed. The outstanding electrochemical performance is attributed to the synergetic effect of stable rhombohedral phase, nanoplate structure and uniform carbon coating layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22(3):587–603

    Article  Google Scholar 

  2. Goodenough JB, Park K-S (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135(4):1167–1176

    Article  Google Scholar 

  3. Nitta N, Wu F, Lee JT, Yushin G (2015) Li-ion battery materials: present and future. Mater Today 18(5):252–264

    Article  Google Scholar 

  4. Yuan L-X, Wang Z-H, Zhang W-X, Hu X-L, Chen J-T, Huang Y-H, Goodenough JB (2011) Development and challenges of LiFePO4 cathode material for lithium-ion batteries. Energy Environ Sci 4(2):269–284

    Article  Google Scholar 

  5. Malik R, Abdellahi A, Ceder G (2013) A critical review of the Li insertion mechanisms in LiFePO4 electrodes. J Electrochem Soc 160(5):A3179–A3197

    Article  Google Scholar 

  6. Pivko M, Bele M, Tchernychova E, Logar NZ, Dominko R, Gaberscek M (2012) Synthesis of nanometric LiMnPO4 via a two-step technique. Chem Mater 24(6):1041–1047

    Article  Google Scholar 

  7. Aravindan V, Gnanaraj J, Lee Y-S, Madhavi S (2013) LiMnPO4—A next generation cathode material for lithium-ion batteries. J Mater Chem A 1(11):3518–3539

    Article  Google Scholar 

  8. Oh S-M, Myung S-T, Sun Y-K (2012) Olivine LiCoPO4-carbon composite showing high rechargeable capacity. J Mater Chem 22(30):14932–14937

    Article  Google Scholar 

  9. Cheng Y, Ni X, Feng K, Zhang H, Li X, Zhang H (2016) Phase-change enabled 2D Li3V2(PO4)3/C submicron sheets for advanced lithium-ion batteries. J Power Sources 326:203–210

    Article  Google Scholar 

  10. Wang L, Bai J, Gao P, Wang X, Looney JP, Wang F (2015) Structure tracking aided design and synthesis of Li3V2(PO4)3 nanocrystals as high-power cathodes for lithium ion batteries. Chem Mater 27(16):5712–5718

    Article  Google Scholar 

  11. Zhang L-L, Li Z, Yang X-L, Ding X-K, Zhou Y-X, Sun H-B, Tao H-C, Xiong L-Y, Huang Y-H (2017) Binder-free Li3V2(PO4)3/C membrane electrode supported on 3D nitrogen-doped carbon fibers for high-performance lithium-ion batteries. Nano Energy 34:111–119

    Article  Google Scholar 

  12. Rajagopalan R, Zhang L, Dou SX, Liu H (2016) Lyophilized 3D lithium vanadium phosphate/reduced graphene oxide electrodes for super stable lithium ion batteries. Adv Energy Mater 6(1):1501760-1–1501760-8

    Article  Google Scholar 

  13. Huang H, Yin SC, Kerr T, Taylor N, Nazar LF (2002) Nanostructured composites: a high capacity, fast rate Li3V2(PO4)3/carbon cathode for rechargeable lithium batteries. Adv Mater 14(21):1525–1528

    Article  Google Scholar 

  14. Jian Z, Han W, Liang Y, Lan Y, Fang Z, Hu Y-S, Yao Y (2014) Carbon-coated rhombohedral Li3V2(PO4)3 as both cathode and anode materials for lithium-ion batteries: electrochemical performance and lithium storage mechanism. J Mater Chem A 2(47):20231–20236

    Article  Google Scholar 

  15. Rui X, Yan Q, Skyllas-Kazacos M, Lim TM (2014) Li3V2(PO4)3 cathode materials for lithium-ion batteries: a review. J Power Sources 258:19–38

    Article  Google Scholar 

  16. Lu Y, Wang L, Song J, Zhang D, Xu M, Goodenough JB (2013) Aluminum-stabilized NASICON-structured Li3V2(PO4)3. J Mater Chem A 1(1):68–72

    Article  Google Scholar 

  17. Yin SC, Grondey H, Strobel P, Anne M, Nazar LF (2003) Electrochemical property: structure relationships in monoclinic Li3-yV2(PO4)3. J Am Chem Soc 125(34):10402–10411

    Article  Google Scholar 

  18. Gaubicher J, Wurm C, Goward G, Masquelier C, Nazar L (2000) Rhombohedral form of Li3V2(PO4)3 as a cathode in Li-ion batteries. Chem Mater 12(11):3240–3242

    Article  Google Scholar 

  19. Zhang Y, Nie P, Shen L, Xu G, Deng H, Luo H, Zhang X (2014) Rhombohedral NASICON-structured Li2NaV2(PO4)3 with single voltage plateau for superior lithium storage. RSC Adv 4(17):8627–8631

    Article  Google Scholar 

  20. Wang W, Chen Z, Zhang J, Dai C, Li J, Ji D (2013) A comparative structural and electrochemical study of monoclinic Li3V2(PO4)3/C and rhombohedral Li2.5Na0.5V(2−2x/3)Nix(PO4)3/C. Electrochim Acta 103:259–265

    Article  Google Scholar 

  21. Alfaruqi MH, Islam S, Song J, Kim S, Pham DT, Jo J, Kim S, Baboo JP, Putro DY, Mathew V, Kim J (2017) Carbon-coated rhombohedral Li2NaV2(PO4)3 nanoflake cathode for Li-ion battery with excellent cycleability and rate capability. Chem Phys Lett 681:44–49

    Article  Google Scholar 

  22. Cui K, Hu S, Li Y (2016) Nitrogen-doped graphene nanosheets decorated Li3V2(PO4)3/C nanocrystals as high-rate and ultralong cycle-life cathode for lithium-ion batteries. Electrochim Acta 210:45–52

    Article  Google Scholar 

  23. Sun P, Zhao X, Chen R, Chen T, Ma L, Fan Q, Lu H, Hu Y, Tie Z, Jin Z, Xu Q, Liu J (2016) Li3V2(PO4)3 encapsulated flexible free-standing nanofabric cathodes for fast charging and long life-cycle lithium-ion batteries. Nanoscale 8(14):7408–7415

    Article  Google Scholar 

  24. Chen L, Yan B, Xu J, Wang C, Chao Y, Jiang X, Yang G (2015) Bicontinuous structure of Li3V2(PO4)3 clustered via carbon nanofiber as high-performance cathode material of Li-Ion batteries. ACS Appl Mater Interfaces 7(25):13934–13943

    Article  Google Scholar 

  25. Qiao YQ, Wang XL, Mai YJ, Xiang JY, Zhang D, Gu CD, Tu JP (2011) Synthesis of plate-like Li3V2(PO4)3/C as a cathode material for Li-ion batteries. J Power Sources 196(20):8706–8709

    Article  Google Scholar 

  26. Liu H, Yang G, Zhang X, Gao P, Wang L, Fang J, Pinto J, Jiang X (2012) Kinetics of conventional carbon coated-Li3V2(PO4)3 and nanocomposite Li3V2(PO4)3/graphene as cathode materials for lithium ion batteries. J Mater Chem A 22(22):11039–11047

    Article  Google Scholar 

  27. Zuo Z-L, Deng J-Q, Pan J, Luo W-B, Yao Q-R, Wang Z-M, Zhou H-Y, Liu H-K (2017) High energy density of Li3−xNaxV2(PO4)3/C cathode material with high rate cycling performance for lithium-ion batteries. J Power Sources 357:117–125

    Article  Google Scholar 

  28. Fang C, Huang Y, Zhang W, Han J, Deng Z, Cao Y, Yang H (2016) Routes to high energy cathodes of sodium-ion batteries. Adv Energy Mater 6(5):1501727-1–1501727-8

    Article  Google Scholar 

  29. Teng F, Hu Z-H, Ma X-H, Zhang L-C, Ding C-X, Yu Y, Chen C-H (2013) Hydrothermal synthesis of plate-like carbon-coated Li3V2(PO4)3 and its low temperature performance for high power lithium ion batteries. Electrochim Acta 91:43–49

    Article  Google Scholar 

  30. Wang Y, Tang Y, Zhong B, Liu H, Zhong Y, Guo X (2014) Facile synthesis of Li3V2(PO4)3/C nano-flakes with high-rate performance as cathode material for Li-ion battery. J Solid State Electrochem 18(1):215–221

    Article  Google Scholar 

  31. Wei Q, Xu Y, Li Q, Tan S, Ren W, An Q, Mai L (2016) Novel layered Li3V2(PO4)3/rGO&C sheets as high-rate and long-life lithium ion battery cathodes. Chem Commun 52(56):8730–8732

    Article  Google Scholar 

  32. Wang S, Zhang Z, Jiang Z, Deb A, Yang L, S-i Hirano (2014) Mesoporous Li3V2(PO4)3@CMK-3 nanocomposite cathode material for lithium ion batteries. J Power Sources 253:294–299

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51661009, 21363005 and 51371061) and the Natural Science Foundation of Guangxi Province (2016GXNSFGA380001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianqiu Deng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Zuo, Z., Deng, J. et al. Rhombohedral Li2.4Na0.6V2(PO4)3@C nanoplates as high-rate and long-life cathode materials for lithium-ion batteries. J Mater Sci 53, 10327–10337 (2018). https://doi.org/10.1007/s10853-018-2302-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2302-8

Keywords

Navigation