Skip to main content

Advertisement

Log in

Fabrication of Metal-Doped Hierarchical Trimodal Porous Li3V2(PO4)3/C Composites with Enhanced Electrochemical Performances for Lithium-Ion Batteries

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Na/Cr-doped Li3V2(PO4)3/C composites with a hierarchical trimodal porous structure, including micro-, meso-, and macropores, are synthesized by a feasible ice-templating method and investigated as cathodes for lithium-ion batteries (LIBs). Na and Cr doping decrease the charge transfer resistance of Li3V2(PO4)3/C and increase the diffusion coefficient of Li ions within the three-dimensional interconnected network, resulting in enhancement of both the capacity and rate performances of hierarchical porous Li3V2(PO4)3/C with maximized electrochemical performances at a doping level of x = 0.04. Cr doping shows a higher enhancement than Na in the capacity of Li3V2(PO4)3. As-prepared Cr-doped Li3V1.96Cr0.04(PO4)3/C shows the high capacity and rate performance of 116.8 mAh g−1 at 10 C as well as an excellent cyclability. This work provides a simple and feasible method to fabricate metal-doped hierarchical trimodal porous cathode materials and deepens our understanding on design of high-performance electrode materials for LIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y. Cheng, K. Feng, W. Zhou, H. Zhang, X. Li, and H. Zhang: Dalton Trans., 2015, vol. 44, pp. 17579–17586.

    Article  Google Scholar 

  2. D. Bhuvaneswari and N. Kalaiselvi: Dalton Trans., 2014, vol. 43, pp. 18097–18103.

    Article  Google Scholar 

  3. L. Mai, S. Li, Y. Dong, Y. Zhao, Y. Luo, and H. Xu: Nanoscale, 2013, vol. 5, pp. 4864–69.

    Article  Google Scholar 

  4. Y. Chen, Y. Zhao, X. An, J. Liu, Y. Dong, and L. Chen: Electrochim. Acta, 2009, vol. 54, pp. 5844–50.

    Article  Google Scholar 

  5. D.-W. Han, S.-J. Lim, Y.-I. Kim, S.H. Kang, Y.C. Lee, and Y.-M. Kang: Chem. Mater., 2014, vol. 26, pp. 3644–50.

    Article  Google Scholar 

  6. B. Xu, C.R. Fell, M. Chi, and Y.S. Meng: Energy Environ. Sci., 2011, vol. 4, pp. 2223–33.

    Article  Google Scholar 

  7. M.-S. Choi, H.-S. Kim, Y.-M. Lee, and B.-S. Jin: J. Mater. Chem. A, 2014, vol. 2, pp. 7873–79.

    Article  Google Scholar 

  8. C. Wang, Z. Li, H. Liu, and Y. Wang: New J. Chem., 2017, vol. 41, pp. 8772–80.

    Article  Google Scholar 

  9. S.-C. Yin, H. Grondey, P. Strobel, M. Anne, and L.F. Nazar: J. Am. Chem. Soc., 2003, vol. 125, pp. 10402–10411.

    Article  Google Scholar 

  10. A.R. Cho, J.N. Son, V. Aravindan, H. Kim, K.S. Kang, W.S. Yoon, W.S. Kim, and Y.S. Lee: J. Mater. Chem., 2012, vol. 22, pp. 6556–60.

    Article  Google Scholar 

  11. C. Sun, S. Rajasekhara, Y. Dong, and J.B. Goodenough: ACS Appl. Mater. Interfaces, 2011, vol. 3, pp. 3772–76.

    Article  Google Scholar 

  12. L. Fei, L. Sun, W. Lu, M. Guo, H. Huang, J. Wang, H.L. Chan, S. Fan, and Y. Wang: Nanoscale, 2014, vol. 6, pp. 12426–12433.

    Article  Google Scholar 

  13. L.-L. Zhang, G. Liang, G. Peng, F. Zou, Y.-H. Huang, M.C. Croft, and A. Ignatov: J. Phys. Chem. C, 2012, vol. 116, pp. 12401–08.

    Article  Google Scholar 

  14. K. Naoi, K. Kisu, E. Iwama, Y. Sato, M. Shinoda, N. Okita, and W. Naoi: J. Electrochem. Soc., 2015, vol. 162, pp. A827–A833.

    Article  Google Scholar 

  15. K. Cui, S. Hu, and Y. Li: Electrochim. Acta, 2016, vol. 210, pp. 45–52.

    Article  Google Scholar 

  16. Z. Li, L.-L. Zhang, X.-L. Yang, H.-B. Sun, Y.-H. Huang, and G. Liang: RSC Adv., 2016, vol. 6, pp. 10334–10340.

    Article  Google Scholar 

  17. Q. Kuang, Y. Zhao, and Z. Liang: J. Power Sources, 2011, vol. 196, pp. 10169–10175.

    Article  Google Scholar 

  18. C. Dai, Z. Chen, H. Jin, and X. Hu: J. Power Sources, 2010, vol. 195, pp. 5775–79.

    Article  Google Scholar 

  19. W. Wang, J. Zhang, Z. Jia, C. Dai, Y. Hu, J. Zhou, and Q. Xiao: Phys. Chem. Chem. Phys., 2014, vol. 16, pp. 13858–13865.

    Article  Google Scholar 

  20. K. Feng, Y. Cheng, M. Wang, H. Zhang, X. Li, and H. Zhang: J. Mater. Chem. A, 2015, vol. 3, pp. 19469–19475.

    Article  Google Scholar 

  21. H. Liu, P. Gao, J. Fang, and G. Yang: Chem. Commun., 2011, vol. 47, pp. 9110–12.

    Article  Google Scholar 

  22. C. Wang, H. Liu, and W. Yang: J. Mater. Chem., 2012, vol. 22, pp. 5281–85.

    Article  Google Scholar 

  23. A. Pan, J. Liu, J.-G. Zhang, W. Xu, G. Cao, Z. Nie, B.W. Arey, and S. Liang: Electrochem. Commun., 2010, vol. 12, pp. 1674–77.

    Article  Google Scholar 

  24. Y. Luo, X. Xu, Y. Zhang, Y. Pi, Y. Zhao, X. Tian, Q. An, Q. Wei, and L. Mai: Adv. Energy Mater., 2014, vol. 4, pp. 1400107–1400114.

    Article  Google Scholar 

  25. R.-G. Oh, J.-E. Hong, H.-W. Jung, and K.-S. Ryu: J. Power Sources, 2015, vol. 295, pp. 1–8.

    Article  Google Scholar 

  26. Q.-Z. Ou, Y. Tang, Y.-J. Zhong, X.-D. Guo, B.-H. Zhong, L. Heng, and M.-Z. Chen: Electrochim. Acta, 2014, vol. 137, pp. 489–96.

    Article  Google Scholar 

  27. Q. Qu, L. Fu, X. Zhan, D. Samuelis, J. Maier, L. Li, S. Tian, Z. Li, and Y. Wu: Energy Environ. Sci., 2011, vol. 4, pp. 3985–90.

    Article  Google Scholar 

  28. S. Wang, Z. Zhang, S. Fang, L. Yang, C. Yang, and S.-I. Hirano: Electrochim. Acta, 2013, vol. 111, pp. 685–90.

    Article  Google Scholar 

  29. H. Li, X. Yu, Y. Bai, F. Wu, C. Wu, L.-Y. Liu, and X.-Q. Yang: J. Mater. Chem. A, 2015, vol. 3, pp. 9578–86.

    Article  Google Scholar 

  30. R. Zhang, Y. Zhang, K. Zhu, F. Du, Q. Fu, X. Yang, Y. Wang, X. Bie, G. Chen, and Y. Wei: ACS Appl. Mater. Interfaces, 2014, vol. 6, pp. 12523–12530.

    Article  Google Scholar 

  31. J.B.Y.A.X.P. Zhao: J. Phys. Chem. B, 2006, vol. 110, pp. 12916–25.

  32. C. Wei, W. He, X. Zhang, F. Xu, Q. Liu, C. Sun, and X. Song: RSC Adv., 2015, vol. 5, pp. 54225–54245.

    Article  Google Scholar 

  33. Q. Wei, Q. An, D. Chen, L. Mai, S. Chen, Y. Zhao, K.M. Hercule, L. Xu, A. Minhas-Khan, and Q. Zhang: Nano Lett., 2014, vol. 14, pp. 1042–48.

    Article  Google Scholar 

  34. J. Su, X.-L. Wu, J.-S. Lee, J. Kim, and Y.-G. Guo: J. Mater. Chem. A, 2013, vol. 1, pp. 2508–14.

    Article  Google Scholar 

  35. N. Meethong, Y.-H. Kao, S.A. Speakman, and Y.-M. Chiang: Adv. Funct. Mater., 2009, vol. 19, pp. 1060–70.

    Article  Google Scholar 

  36. S.Y. Chung, J.T. Bloking, and Y.M. Chiang: Nat. Mater., 2002, vol. 1, pp. 123–28.

    Article  Google Scholar 

  37. Z. Wang, W. He, X. Zhang, Y. Yue, G. Yang, X. Yi, Y. Wang, and J. Wang: ChemElectroChem, 2017, vol. 4, pp. 671–78.

    Article  Google Scholar 

  38. P. Fu, Y. Zhao, Y. Dong, X. An, and G. Shen: J. Power Sources, 2006, vol. 162, pp. 651–57.

    Article  Google Scholar 

  39. J.-C. Zheng, X.-H. Li, Z.-X. Wang, H.-J. Guo, Q.-Y. Hu, and W.-J. Peng: J. Power Sources, 2009, vol. 189, pp. 476–79.

    Article  Google Scholar 

  40. C. Wang, W. Shen, and H. Liu: New J. Chem., 2014, vol. 38, pp. 430–36.

    Article  Google Scholar 

  41. X. Nan, C. Zhang, C. Liu, M. Liu, Z.L. Wang, and G. Cao: ACS Appl. Mater. Interfaces, 2016, vol. 8, pp. 862–70.

    Article  Google Scholar 

  42. R. Wang, S. Xiao, X. Li, J. Wang, H. Guo, and F. Zhong: J. Alloys Compd., 2013, vol. 575, pp. 268–72.

    Article  Google Scholar 

  43. L. Liu, X. Lei, H. Tang, R. Zeng, Y. Chen, and H. Zhang: Electrochim. Acta, 2015, vol. 151, pp. 378–85.

    Article  Google Scholar 

  44. J. Kim, J.-K. Yoo, Y.S. Jung, and K. Kang: Adv. Energy Mater., 2013, vol. 3, pp. 1004–07.

    Article  Google Scholar 

  45. Y. Wang, L. Wang, Z. Hou, and W. Mao: Solid State Ionics, 2014, vol. 261, pp. 11–16.

    Article  Google Scholar 

  46. Y. Yu, L. Gu, X. Lang, C. Zhu, T. Fujita, M. Chen, and J. Maier: Adv. Mater., 2011, vol. 23, pp. 2443–47.

    Article  Google Scholar 

  47. S. Wang, W. Zhao, Y. Wang, X. Liu, and L. Li: Electrochim. Acta, 2013, vol. 109, pp. 46–51.

    Article  Google Scholar 

  48. S. Yang, X. Feng, and K. Mullen: Adv. Mater., 2011, vol. 23, pp. 3575–79.

    Article  Google Scholar 

  49. Y. Zhang, X. Liu, S. Wang, S. Dou, and L. Li: J. Mater. Chem. A, 2016, vol. 4, pp. 10869–77.

    Article  Google Scholar 

  50. G.C.D. Morgan, M.Y. Saıdi, J. Barker, J. Swoyer, H. Huang, and G. Adamson: Chem. Mater., 2002, vol. 14, pp. 4684–93.

    Article  Google Scholar 

  51. S. Sarkar and S. Mitra: J. Phys. Chem. C, 2014, vol. 118, pp. 11512–11525.

    Article  Google Scholar 

  52. H. Wang, Y. Li, C. Huang, Y. Zhong, and S. Liu: J. Power Sources, 2012, vol. 208, pp. 282–87.

    Article  Google Scholar 

  53. J. Liu, J. Wang, C. Xu, H. Jiang, C. Li, L. Zhang, J. Lin, and Z.X. Shen: Adv. Sci., 2018, vol. 5, pp. 1700322–41.

    Article  Google Scholar 

  54. J. Wang, J. Polleux, J. Lim, and B. Dunn: J. Phys. Chem. C, 2007, vol. 11, pp. 14925–14931.

    Article  Google Scholar 

  55. C. Zhao, C. Yu, M. Zhang, H. Huang, S. Li, X. Han, Z. Liu, J. Yang, W. Xiao, J. Liang, X. Sun, and J. Qiu: Adv. Energy Mater., 2017, vol. 7, pp. 1602880–1602887.

    Article  Google Scholar 

  56. D.W. Wang, F. Li, M. Liu, G.Q. Lu, and H.-M. Cheng: Angew. Chem., 2008, vol. 120, pp. 379–82.

    Article  Google Scholar 

  57. Y. Yu, L. Gu, C. Zhu, S. Tsukimoto, P.A. van Aken, and J. Maier: Adv. Mater., 2010, vol. 22, pp. 2247–50.

    Article  Google Scholar 

  58. Q. Chen, X. Qiao, Y. Wang, T. Zhang, C. Peng, W. Yin, and L. Liu: J. Power Sources, 2012, vol. 201, pp. 267–73.

    Article  Google Scholar 

  59. W. Yuan, J. Yan, Z. Tang, O. Sha, J. Wang, W. Mao, and L. Ma: Electrochim. Acta, 2012, vol. 72, pp. 138–42.

    Article  Google Scholar 

  60. C. Deng, S. Zhang, S.Y. Yang, Y. Gao, B. Wu, L. Ma, B.L. Fu, Q. Wu, and F.L. Liu: J. Phys. Chem. C, 2011, vol. 115, pp. 15048–15056.

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China (Grant No. 51574062).

Conflict of interest

The authors express no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shulan Wang, Xuan Liu or Li Li.

Additional information

Manuscript submitted August 15, 2018.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 710 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Li, L., Wang, S. et al. Fabrication of Metal-Doped Hierarchical Trimodal Porous Li3V2(PO4)3/C Composites with Enhanced Electrochemical Performances for Lithium-Ion Batteries. Metall Mater Trans A 50, 1468–1479 (2019). https://doi.org/10.1007/s11661-018-5075-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-5075-4

Navigation