Skip to main content
Log in

Effect of crystallinity on capacity and cyclic stability of Na1.1V3O7.9 nanoplates as lithium-ion cathode materials

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

High-crystalline Na1.1V3O7.9 nanoplates were synthesized by a facile sol-gel reaction followed by calcination. The microstructure and crystallinity of the nanoplates were primarily determined by calcination temperature. The maximum crystallinity Na1.1V3O7.9 sample was calcined at 500 °C was calculated by XRD, and the DSC demonstrated that the amorphous transformation temperature begins at 550 °C. The XPS spectrum confirmed the presence of Na1.1V3O7.9 and consistent with the XRD test results. The SEM/TEM test illustrated the crystal particle growth of the Na1.1V3O7.9 nanoplates. Electrochemical results showed that the maximum crystallinity Na1.1V3O7.9 sample prepared at 500 °C exhibited the optimum performance when evaluated as a cathode material for lithium-ion batteries: the discharge capacity was maintained at 195 mAh g−1 after 150 cycles at a current of 100 mA g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shang H, Zuo Z, Yu L, Wang F, He F, Li Y (2018) Low-temperature growth of all-carbon graphdiyne on a silicon anode for high-performance Lithium-ion batteries. Adv Mater 30(27):1801459

    Article  Google Scholar 

  2. Zhang Q, Chen H, Luo L, Zhao B, Luo H, Han X, Wang J, Wang C, Yang Y, Zhu T, Liu M (2018) Harnessing the concurrent reaction dynamics in active Si and Ge to achieve high performance lithium-ion batteries. Energy Environ Sci 11(3):669–681

    Article  CAS  Google Scholar 

  3. Wu H, Chan G, Choi JW, Ryu I, Yao Y, Mcdowell MT, Lee SW, Jackson A, Yang Y, Hu L, Cui Y (2012) Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat Nanotechnol 7(5):310–315

    Article  CAS  Google Scholar 

  4. He X, Luan SZ, Wang L, Wang RY, Du P, Xu YY, Yang HJ, Wang YG, Huang K, Lei M (2019) Facile loading mesoporous Co3O4 on nitrogen doped carbon matrix as an enhanced oxygen electrode catalyst. Mater Lett 244:72–82

    Google Scholar 

  5. Huang K, Liu J, Wang L, Chang G, Wang R, Lei M, Wang Y, He Y (2019) Mixed valence CoCuMnOx spinel nanoparticles by sacrificial template method with enhanced ORR performance. Appl Surf Sci 487:1145–1151

    Article  CAS  Google Scholar 

  6. Wang H, Liu R, Li Y, Lü X, Wang Q, Zhao S, Yuan K, Cui Z, Li X, Xin S, Zhang R, Lei M, Lin Z (2018) Durable and efficient hollow porous oxide spinel microspheres for oxygen reduction. Joule 2(2):337–348

    Article  CAS  Google Scholar 

  7. Fergus JW (2010) Recent developments in cathode materials for lithium ion batteries. J Power Sources 195(4):939–954

    Article  CAS  Google Scholar 

  8. Chen J (2013) Recent Progress in advanced materials for Lithium ion batteries. Materials 6(1):156–183

    Article  Google Scholar 

  9. Wang H, Liu S, Ren Y, Wang W, Tang A (2012) Ultrathin Na1.08V3O8 nanosheets-a novel cathode material with superior rate capability and cycling stability for Li-ion batteries. Energy Environ Sci 5(3):6173–6179

    Article  CAS  Google Scholar 

  10. Poizot P, Laruelle S, Grugeon S, Dupont LJ-M, Tarascon (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407(6803):496–499

    Article  CAS  Google Scholar 

  11. Fang D, Chen S, Wang X, Bando Y, Golberg D, Zhang S (2018) ZnS Quantum Dots@Multilayered carbon: geological-plate-movement-inspired design for high-energy Li-ion batteries. J Mater Chem A 6:8358–8365. https://doi.org/10.1039/C8TA01667D

    Article  CAS  Google Scholar 

  12. Gao Z, Sun H, Fu L, Ye F, Zhang Y, Luo W, Huang Y (2018) Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state Lithium batteries. Adv Mater 30:1705702

    Article  Google Scholar 

  13. Liang S, Zhou J, Fang G, Liu J, Tang Y, Li X, Pan A (2013) Ultrathin Na1.1V3O7.9 nanobelts with superior performance as cathode materials for lithium-ion batteries. Acs Appl Mater Inter 5(17):8704–8709

    Article  CAS  Google Scholar 

  14. Pan A, Wu HB, Yu L, Zhu T, Lou XW (2012) Synthesis of hierarchical three-dimensional vanadium oxide microstructures as high-capacity cathode materials for lithium-ion batteries. Acs Appl Mater Inter 4(8):3874–3879

    Article  CAS  Google Scholar 

  15. Liang X, Gao G, Liu Y, Ge Z, Leng P, Wu G (2017) Carbon nanotubes/vanadium oxide composites as cathode materials for lithium-ion batteries. J Sol-Gel Sci Techn 82(1):224–232

    Article  CAS  Google Scholar 

  16. Wang Y, Takahashi K, Lee K, Cao G (2006) Nanostructured vanadium oxide electrodes for enhanced lithium-ion intercalation. Adv Funct Matera 16(9):1133–1144

    Article  CAS  Google Scholar 

  17. Shao J, Li X, Wan Z, Zhang L, Ding Y, Zhang L, Qu Q, Zheng H (2013) Low-cost synthesis of hierarchical V2O5 microspheres as high-performance cathode for lithium-ion batteries. Acs Appl Mater Inter 5(16):7671–7675

    Article  CAS  Google Scholar 

  18. Xue L, Savilov SV, Lunin VV, Xia H (2017) Self-standing porous LiCoO2 nanosheet arrays as 3D cathodes for flexible Li-ion batteries. Adv Funct Matera 1705836

  19. Luo XD, Yin YZ, Yuan M, Zeng W, Lin G, Huang B, Li YW, Xiao SH (2018) High performance composites of spinel LiMn2O4/3DG for lithium ion batteries. RSC Adv 8(2):877–884

    Article  CAS  Google Scholar 

  20. Li Z, Feng X, Mi L, Zheng J, Chen X, Chen W (2018) Hierarchical porous onion-shaped LiMn2O4 as ultrahigh-ratecathode material for lithium ion batteries. Nano Res 11(8):4038–4048

    Article  CAS  Google Scholar 

  21. Deng Y, Zhou Y, Shi Z, Zhou X, Quan X, Chen G (2013) Porous LiMn2O4 microspheres as durable high power cathode materials for lithium ion batteries. J Mater Chem A 1(28):8170–8177

    Article  CAS  Google Scholar 

  22. Liu Q, Mao D, Chang C, Huang F (2007) Phase conversion and morphology evolution during hydrothermal preparation of orthorhombic LiMnO2, nanorods for lithium ion battery application. J Power Sources 173(1):538–544

    Article  CAS  Google Scholar 

  23. Meng Y, Han W, Zhang Z, Zhu F, Zhang Y, Wang D (2017) LiFePO4 particles coated with N-doped carbon membrane. J Nanosci Nanotechno 17(3):2000–2005

    Article  CAS  Google Scholar 

  24. Eftekhari A (2017) LiFePO4/C nanocomposites for lithium-ion batteries. J Power Sources 343:395–411

    Article  CAS  Google Scholar 

  25. Tsuda T, Ando N, Matsubara K, Tanabe T, Itagaki K, Soma N, Nakamura S, Hayashi N, Gunji T, Ohsaka T, Matsumoto F (2018) Improvement of high rate performance of a Lithium ion battery composed of laminated LiFePO4 cathodes/graphite anodes with porous electrode structure fabricated with a Pico-second pulsed laser. Electrochim Acta 291:267–277

    Article  CAS  Google Scholar 

  26. Cheng F, Chen J (2011) Transition metal vanadium oxides and vanadate materials for lithium batteries. J Mater Chem 21(27):9841–9848

    Article  CAS  Google Scholar 

  27. Li X, Cheng F, Guo B, Chen J (2005) Template-synthesized LiCoO2, LiMn2O4, and LiNi0.8Co0.2O2 nanotubes as the cathode materials of lithium ion batteries. J Phys Chem B 109(29):14017–14024

    Article  CAS  Google Scholar 

  28. Wang X, Jia W, Wang L, Huang Y, Guo Y, Sun Y, Jia D, Pang W, Guo Z, Tang X (2016) Simple in situ synthesis of carbon-supported and nanosheet-assembled vanadium oxide for ultra-high rate anode and cathode materials of lithium ion batteries. J Mater Chem A 4(36):13907–13915

    Article  CAS  Google Scholar 

  29. Jouanneau S, Le GLSA, Verbaere A, Guyomard D, Deschamps M, Lascaud S (2003) New alkaline earth substituted lithium trivanadates: synthesis, characterization and lithium insertion behavior. J Mater Chem 13(7):1827–1834

    Article  CAS  Google Scholar 

  30. Tang Y, Sun D, Wang H, Huang X, Zhang H, Liu S, Liu Y (2014) Synthesis and electrochemical properties of NaV3O8 nanoflakes as high-performance cathode for Li-ion battery. RSC Adv 4(16):8328–8334

    Article  CAS  Google Scholar 

  31. Cao L, Chen L, Huang Z, Kuang Y, Zhou H, Chen Z (2016) NaV3O8 nanoplates as a lithium ion battery cathode with superior rate capability and cycle stability. Chemelectrochem 3(1):122–129

    Article  CAS  Google Scholar 

  32. Yuan S, Liu YB, Xu D, Ma DL, Wang S, Yang XH, Cao ZY, Zhang (2015) Pure single-crystalline Na1.1V3O7.9 nanobelts as superior cathode materials for rechargeable sodium-ion batteries. Adv Sci 2(3):1400018

    Article  Google Scholar 

  33. Gundlach DJ, Royer JE, Park SK, Subramanian S, Jurchescu OD, Hamadani BH, Moad AJ, Kline RJ, Teague LC, Kirillov O, Richter CA, Kushmerick JG, Richter LJ, Parkin SR, Jackson TN, Anthony JE (2008) Contact-induced crystallinity for high-performance soluble acene-based transistors and circuits. Nat Mater 7(3):216–221

    Article  CAS  Google Scholar 

  34. Zheng Q, Zhang Y, Montazerian M, Gulbiten O, Mauro JC, Zanotto ED, Yue Y (2019) Understanding glass through differential scanning Calorimetry. Chem Rev 119(13):7848–7939

    Article  CAS  Google Scholar 

  35. Kozhevnikov AV, Anisimov VI, Korotin MA (2007) Calculation of the electronic structure of the vanadium dioxide VO2 in the monoclinic low-temperature phase M1 using the generalized transition state method. Phys Met Metallogr 104(3):215–220

    Article  Google Scholar 

  36. Slink WE, Degroot PB (1981) Vanadium-titanium oxide catalysts for oxidation of butene to acetic acid. J Catal 68(2):423–432

    Article  Google Scholar 

  37. Horvath AB, Strutz J, Geyer-Lippmann J, Horvath EG (1981) Preparation, properties, and ESCA characterization of vanadium surface compounds on Silicagel. II Z Anorg Allg Chem 483(12):193–204

    Article  CAS  Google Scholar 

  38. Bond GC, Zurita JP, Flamerz S (1986) Structure and reactivity of titania-supported oxides. Part 2: characterisation of various vanadium oxide on titania catalysts by x-ray photoelectron spectroscopy. Appl Catal 27(2):353–362

    Article  CAS  Google Scholar 

  39. Shi Y, Wen L, Li F, Cheng MH (2011) Nanosized Li4Ti5O12/graphene hybrid materials with low polarization for high rate lithium ion batteries. J Power Sources 196(20):8610–8617

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of Shandong Province (ZR2018LE003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yue Xu or Ping Zhao.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 33 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuang, H., Xu, Y. & Zhao, P. Effect of crystallinity on capacity and cyclic stability of Na1.1V3O7.9 nanoplates as lithium-ion cathode materials. J Solid State Electrochem 24, 217–223 (2020). https://doi.org/10.1007/s10008-019-04482-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04482-4

Keywords

Navigation