Skip to main content
Log in

Synthesis of Co-doped β-FeSi2/Si composites through eutectoid decomposition and its thermoelectric properties

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We attempted to synthesize composites of Co-doped β-FeSi2 thermoelectric material with fine Si dispersion from α phase composition of Fe2Si5. We annealed the sintered bodies through eutectoid decomposition of high-temperature α phase to low-temperature semiconducting β phase in Fe–Si system. As a result, we obtained micro to nanoscale differences in Si distribution caused by the different annealing times and temperatures. Sizes of dispersed Si particles ranged between 100 and 300 nm. Seebeck coefficient of Co-doped β-FeSi2 with Si dispersion is higher than that of the conventional singular phase Co-doped β-FeSi2. This value overpowers the increase in electrical resistivity and thermal conductivity, thus elevating the dimensionless figure of merit, ZT from approximately 0.05–0.085. Furthermore, thermal conductivity of Co-doped β-FeSi2/Si composite annealed at 800 °C for 4 h was lower than calculated value from the rule of mixture where dispersed structure was not considered in the calculation. This proves that Si dispersions help suppress thermal conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Ismail B, Ahmed W (2009) Thermoelectric power generation using waste-heat energy as an alternative green technology. Recent Pat Electr Eng 2:27–39. https://doi.org/10.2174/1874476110902010027

    Article  Google Scholar 

  2. Rowe DM (1995) CRC handbook of thermoelectrics. CRC Press, Boca Raton, pp 277–285

    Book  Google Scholar 

  3. Anno H (2005) Thermoelectric conversion material. In: Ceramics Society of Japan, The Thermoelectrics Society of Japan (eds). The Daily Industrial News (Nikkan Kougyou Shinbunsha), p 8. http://www.ceramic.or.jp/shuppan/nikkan-netsuden/netsudenhenkan-zairyou.html

  4. Rowe DM (1995) CRC handbook of thermoelectrics. CRC Press, Boca Raton, p 287

    Book  Google Scholar 

  5. Fleurial JP (1998) International union of materials research society. In: Des Discov Highly Effic Thermoelectr Mater, pp 2–3. https://trs.jpl.nasa.gov/handle/2014/19508

  6. Jiang JX, Sasakawa T, Matsugi K et al (2005) Thermoelectric properties of β-FeSi2 with Si dispersoids formed by decomposition of α-Fe2Si5 based alloys. J Alloys Compd 391:115–122. https://doi.org/10.1016/j.jallcom.2004.07.070

    Article  Google Scholar 

  7. Kiatgamolchai S, Nilpairach S, Wanichsampan J, Thueploy A (2016) The effects of elements with different melting points on ε-FeSi size in FeSi2 alloy. J Alloys Compd 666:237–242. https://doi.org/10.1016/j.jallcom.2016.01.068

    Article  Google Scholar 

  8. Kojima T, Masumoto K, Okamoto MA, Nishida I (1990) Formation of β-FeSi2 from the sintered eutectic alloy FeSi–Fe2Si5 doped with cobalt. J Less Common Met 159:299–305. https://doi.org/10.1016/0022-5088(90)90157-F

    Article  Google Scholar 

  9. Kiatgamolchai S, Parinyataramas J, Nilpairach S et al (2006) Thermoelectric properties of β-FeSi2 prepared by the mechanical alloying technique and pressureless sintering. Acta Metall Slovaca 2:119–127

    Google Scholar 

  10. Ail U, Gorsse S, Perumal S et al (2015) Thermal conductivity of β-FeSi2/Si endogenous composites formed by the eutectoid decomposition of α-Fe2Si5. J Mater Sci 50:6713–6718. https://doi.org/10.1007/s10853-015-9225-4

    Article  Google Scholar 

  11. Bux SK, Blair RG, Gogna PK et al (2009) Nanostructured bulk silicon as an effective thermoelectric material. Adv Funct Mater 19:2445–2452. https://doi.org/10.1002/adfm.200900250

    Article  Google Scholar 

  12. Uchida N, Kanayama T. Japanese Patent No. 2010-207987

  13. Rowe DM (1995) CRC handbook of thermoelectrics. CRC Press, Boca Raton, p 290

    Book  Google Scholar 

  14. Tani J, Kido H (1998) Electrical properties of Co-doped and Ni-doped β-FeSi2. J Appl Phys 84:1408–1411. https://doi.org/10.1063/1.368174

    Article  Google Scholar 

  15. Ito M, Takemoto K (2008) Synthesis of thermoelectric Fe0.98Co0.02Si2 with fine Ag dispersion by mechanical milling with AgO powder. Mater Trans 49:1714–1719. https://doi.org/10.2320/matertrans.E-MRA2008808

    Article  Google Scholar 

  16. Jiang J, Matsugi K, Sasaki G, Yanagisawa O (2005) Resistivity study of eutectoid decomposition kinetics of α-Fe2Si5 alloy. Mater Trans 46:720–725. https://doi.org/10.2320/matertrans.46.720

    Article  Google Scholar 

  17. Zhigilei LV (2010) Introduction to the science and engineering: phase transformation. http://people.virginia.edu/~lz2n/mse209/index.html. (Online lecture notes). MSE 2090 16

  18. Ito M, Nagai H, Oda E et al (2002) Effects of P doping on the thermoelectric properties of β-FeSi2. J Appl Phys 91:2138–2142. https://doi.org/10.1063/1.1436302

    Article  Google Scholar 

  19. Mizuuchi K, Inoue K, Agari Y et al (2014) Bimodal and monomodal diamond particle effect on the thermal conductivity of diamond particle dispersed Al matrix composite produced by SPS. Mater Sci Forum 783–786:2462–2467. https://doi.org/10.4028/www.scientific.net/MSF.783-786.2462

    Article  Google Scholar 

  20. Pietrak K, Winiewski TS (2015) A review of models for effective thermal conductivity of composite materials. Open Access J J Power Technol 95:14–24

    Google Scholar 

  21. Glassbrenner CJ, Slack GA (1964) Thermal conductivity of silicon and germanium from 300 K to the melting point. Phys Rev 134:A1058–A1069. https://doi.org/10.1103/PhysRev.134.A1058

    Article  Google Scholar 

  22. Ito M, Takiguchi Y (2005) Thermoelectric properties of p-type Fe0.9Mn0.1Si2 with rare-earth oxide addition. Mater Trans 46:1497–1501. https://doi.org/10.2320/matertrans.46.1497

    Article  Google Scholar 

  23. Niizeki N, Kato M, Ohsugi IJ et al (2009) Effect of aluminum and copper addition to the thermoelectric properties of FeSi2 sintered in the atmosphere. Mater Trans 50:1586–1591. https://doi.org/10.2320/matertrans.E-M2009808

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farah Liana Binti Mohd Redzuan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Redzuan, F.L.B.M., Mikio, I. & Masatoshi, T. Synthesis of Co-doped β-FeSi2/Si composites through eutectoid decomposition and its thermoelectric properties. J Mater Sci 53, 7683–7690 (2018). https://doi.org/10.1007/s10853-018-2066-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2066-1

Keywords

Navigation