Skip to main content
Log in

Effects of Cu addition to n-type β-FeSi2/Si composite on the Si precipitation and its thermoelectric properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We investigated the influence of Cu addition to Co-doped β-FeSi2/Si thermoelectric material. We expected the addition of Cu to accelerate the eutectoid decomposition of α-Fe2Si5 phase resulting in a finer distribution of Si secondary phase. We added 1 mass% and 2 mass% of Cu followed by the annealing process in various conditions. We obtained a significant decrease of Si size, reaching less than 100 nm for composites with 2 mass% Cu, annealed at 650 °C-2 h. Within the same amount of Cu, Si size was clearly increased after annealed at 800 °C-4 h, suggesting that the phase transition is accelerated with the existence of Cu. The thermal conductivity value was greatly reduced for sample with 2 mass% Cu, compared with the experimental value of single β-FeSi2 and calculated value from the rule of mixture. This proves that the fine distribution of Si help suppress thermal conductivity despite the high value of the Si phase itself. However, the excessive amount of Cu (2 mass%) degenerated the electrical properties of β-FeSi2/Si. Nonetheless, the sample with 1 mass% Cu annealed at 800 °C for 4 h showed the highest ZT value of 0.1, indicating that it is essential to keep the balance of Cu amount and annealing conditions towards TE performance enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. X. Zhang, L.-D. Zhao, Thermoelectric materials: energy conversion between heat and electricity. J. Mater. 1, 92–105 (2015). https://doi.org/10.1016/j.jmat.2015.01.001

    Article  Google Scholar 

  2. B. Ismail, W. Ahmed, Thermoelectric power generation using waste-heat energy as an alternative green technology. Recent Patents Electr. Eng. 2, 27–39 (2009). https://doi.org/10.2174/1874476110902010027

    Article  CAS  Google Scholar 

  3. D.M. Rowe, CRC Handbook of Thermoelectrics (CRC Press, Boca Raton, 1995), pp. 277–287

    Google Scholar 

  4. H. Anno, in Introduction to Thermoelectric Materials (Japanese). in Thermoelectr. Mater., (2005), p. 8

  5. J.P. Fleurial, in International Union of Materials Research Society. Des. Discov. Highly Effic. Thermoelectr. Mater., (1998) pp. 2–3

  6. J.X. Jiang, T. Sasakawa, K. Matsugi, G. Sasaki, O. Yanagisawa, Thermoelectric properties of β-FeSi2 with Si dispersoids formed by decomposition of α-Fe2Si5 based alloys. J. Alloys Compd. 391, 115–122 (2005). https://doi.org/10.1016/j.jallcom.2004.07.070

    Article  CAS  Google Scholar 

  7. S. Kiatgamolchai, S. Nilpairach, J. Wanichsampan, A. Thueploy, The effects of elements with different melting points on ε-FeSi size in FeSi2 alloy. J. Alloys Compd. 666, 237–242 (2016). https://doi.org/10.1016/j.jallcom.2016.01.068

    Article  CAS  Google Scholar 

  8. T. Kojima, K. Masumoto, M.A. Okamoto, I. Nishida, Formation of β-FeSi2 from the sintered eutectic alloy FeSi–Fe2Si5 doped with cobalt. J. Less Common Met. 159, 299–305 (1990). https://doi.org/10.1016/0022-5088(90)90157-F

    Article  CAS  Google Scholar 

  9. S. Kiatgamolchai, J. Parinyataramas, S. Nilpairach, A. Thueploy, J. Wanichsampan, M. Gao, Thermoelectric properties of β-FeSi2 prepared by the mechanical alloying technique and pressureless sintering. J. Jpn. Soc. Powder Powder Metall. 2, 119–127 (2006)

    Google Scholar 

  10. U. Ail, S. Gorsse, S. Perumal, M. Prakasam, A. Umarji, S. Vivès, P. Bellanger, R. Decourt, Thermal conductivity of β-FeSi2/Si endogenous composites formed by the eutectoid decomposition of α-Fe2Si5. J. Mater. Sci. 50, 6713–6718 (2015). https://doi.org/10.1007/s10853-015-9225-4

    Article  CAS  Google Scholar 

  11. S.K. Bux, R.G. Blair, P.K. Gogna, H. Lee, G. Chen, M.S. Dresselhaus, R.B. Kaner, J.-P. Fleurial, Nanostructured bulk silicon as an effective thermoelectric material. Adv. Funct. Mater. 19, 2445–2452 (2009). https://doi.org/10.1002/adfm.200900250

    Article  CAS  Google Scholar 

  12. N. Uchida, T. Kanayama, Japanese Patent No. 2010-207987, 2010–207987, n.d

  13. F.L.B.M. Redzuan, I. Mikio, T. Masatoshi, Synthesis of Co-doped β-FeSi2/Si composites through eutectoid decomposition and its thermoelectric properties. J. Mater. Sci. 53, 7683–7690 (2018). https://doi.org/10.1007/s10853-018-2066-1

    Article  CAS  Google Scholar 

  14. I. Yamauchi, A. Suganuma, T. Okamoto, I. Ohnaka, Effect of copper addition on the -phase formation rate in FeSi2 thermoelectric materials. J. Mater. Sci. 32, 4603–4611 (1997)

    Article  CAS  Google Scholar 

  15. M. Ito, H. Nagai, D. Harimoto, S. Katsuyama, K. Majima, Effects of Cu addition on the thermoelectric properties of hot-pressed??-FeSi2 with SiC dispersion. J. Alloys Compd. 322, 226–232 (2001). https://doi.org/10.1016/S0925-8388(01)01171-9

    Article  CAS  Google Scholar 

  16. I. Yamauchi, S. Ueyama, I. Ohnaka, fl-FeSi2 Phase formation from a unidirectionally solidified rod-type eutectic structure composed of both e and E phases. Mater. Sci. Eng. 208, 108–115 (1996)

    Article  Google Scholar 

  17. M. Li, S.J. Zinkle, Physical and mechanical properties of copper and copper alloys. Compr. Nucl. Mater. 4, 667–690 (2012). https://doi.org/10.1016/B978-0-08-056033-5.00122-1

    Article  CAS  Google Scholar 

  18. M.H. Lee, J. Rhyee, Thermoelectric properties of p-type PbTe/Ag2Te bulk composites by extrinsic phase mixing Thermoelectric properties of p -type PbTe/Ag 2 Te bulk composites by extrinsic phase mixing. AIV Adv. 5, 127223 (2016). https://doi.org/10.1063/1.4938565

    Article  CAS  Google Scholar 

  19. V.C. Srivastava, S.N. Ojha, Microstructure and electrical conductivity of Al-SiC p composites produced by spray forming process. Bull. Mater. Sci. 28(2), 125–130 (2005)

    Article  CAS  Google Scholar 

  20. H. Zou, D.M. Rowe, G. Min, Growth of p- and n-type bismuth telluride thin films by co-evaporation. J. Cryst. Growth 222, 82–87 (2001). https://doi.org/10.1016/S0022-0248(00)00922-2

    Article  CAS  Google Scholar 

  21. X.W. Wang, H. Lee, Y.C. Lan, G.H. Zhu, G. Joshi, D.Z. Wang, J. Yang, A.J. Muto, M.Y. Tang, J. Klatsky, S. Song, M.S. Dresselhaus, G. Chen, Z.F. Ren, Enhanced thermoelectric figure of merit in nanostructured n -type silicon germanium bulk alloy. Appl. Phys. Lett. 93, 1–4 (2008). https://doi.org/10.1063/1.3027060

    Article  CAS  Google Scholar 

  22. Y. Noda, H. Kon, Y. Furukawa, N. Otsuka, I.A. Nishida, K. Masumoto, Preparation and thermoelectric properties of Mg2Si1-xGex (x = 0.0 ~ 0.4) Solid Solution Semiconductors. Mater. Trans. 33, 845 (1992). https://doi.org/10.2320/matertrans1989.33.845

    Article  CAS  Google Scholar 

  23. M. Thesberg, H. Kosina, N. Neophytou, On the Lorenz number of multiband materials. Phys. Rev. B 95, 1–14 (2017). https://doi.org/10.1103/PhysRevB.95.125206

    Article  Google Scholar 

  24. H. Kim, Z.M. Gibbs, Y. Tang, H. Wang, G.J. Snyder, H. Kim, Z.M. Gibbs, Y. Tang, H. Wang, G.J. Snyder, Characterization of Lorenz number with Seebeck coefficient measurement. APL Mater. 041506, 1–6 (2016). https://doi.org/10.1063/1.4908244

    Article  CAS  Google Scholar 

  25. M. Otsuka, R. Homma, Y. Hasegawa, Estimation of phonon and carrier thermal conductivities for bulk thermoelectric materials using transport properties. J. Electron. Mater. 46, 2752–2764 (2017). https://doi.org/10.1007/s11664-016-4955-x

    Article  CAS  Google Scholar 

  26. Y. Xiao, C. Chang, X. Zhang, Y. Pei, F. Li, B. Yuan, Thermoelectric transport properties of Ag m Pb 100 Bi m Se 100 + 2 m system. J. Mater. Sci. 27, 2712–2717 (2016). https://doi.org/10.1007/s10854-015-4081-1

    Article  CAS  Google Scholar 

  27. P. Golinelli, L. Varani, L. Reggiani, Generalization of thermal conductivity and lorenz number to hot-carrier conditions in nondegenerate semiconductors. Phys. Rev. Lett. 77, 1115–1118 (1996). https://doi.org/10.1103/PhysRevLett.77.1115

    Article  CAS  Google Scholar 

  28. E. Arushanov, K.G. Lisunov, Transport properties of β-FeSi2. Jpn. J. Appl. Phys. 54, 2 (2015). https://doi.org/10.7567/jjap.54.07ja02

    Article  Google Scholar 

  29. M. Ito, H. Nagai, E. Oda, S. Katsuyama, K. Majima, Effects of P doping on the thermoelectric properties of β-FeSi2. J. Appl. Phys. 91, 2138–2142 (2002). https://doi.org/10.1063/1.1436302

    Article  CAS  Google Scholar 

  30. M. Ito, K. Takemoto, Synthesis of thermoelectric Fe0.98Co0.02Si2 with fine Ag dispersion by mechanical milling with AgO powder. Mater. Trans. 49, 1714–1719 (2008). https://doi.org/10.2320/matertrans.e-mra2008808

    Article  CAS  Google Scholar 

  31. J. Jiang, K. Matsugi, G. Sasaki, O. Yanagisawa, Resistivity study of eutectoid decomposition kinetics of α-Fe2Si5 alloy. Mater. Trans. 46, 720–725 (2005). https://doi.org/10.2320/matertrans.46.720

    Article  CAS  Google Scholar 

Download references

Funding

This research did not receive any specific Grant from funding agencies in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farah Liana Binti Mohd Redzuan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Redzuan, F.L.B.M., Ito, M. & Takeda, M. Effects of Cu addition to n-type β-FeSi2/Si composite on the Si precipitation and its thermoelectric properties. J Mater Sci: Mater Electron 30, 12234–12243 (2019). https://doi.org/10.1007/s10854-019-01582-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01582-9

Navigation