Skip to main content
Log in

Thermal conductivity of β-FeSi2/Si endogenous composites formed by the eutectoid decomposition of α-Fe2Si5

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Thermoelectric properties of semiconducting β-FeSi2 containing a homogeneous distribution of Si secondary phase have been studied. The synthesis was carried out using arc melting followed by the densification by uniaxial hot pressing. Endogenous β-FeSi2/Si composites were produced by the eutectoid decomposition of high-temperature α-Fe2Si5 phase. The aging heat treatments have been carried out at various temperatures below the equilibrium eutectoid temperature for various durations in order to tune the size of the eutectoid product. Thermal properties of the samples were studied in the temperature range of 100–350 °C. The microstructural investigations support the fact that the finest microstructure generated through the eutectoid decomposition of the α-Fe2Si5 metastable phase is responsible of the phonon scattering. The results suggest an opportunity to produce bulk iron silicide alloys with reduced thermal conductivity in order to enhance its thermoelectric performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rowe DM (1995) CRC hand book of thermoelectrics. CRC Press, New York, p 287

    Book  Google Scholar 

  2. Fedorov MI (2009) Thermoelectric silicides: past, present and future. J Thermoelectr 2:51–60

    Google Scholar 

  3. Lange H (1997) Electronic properties of semiconducting silicides. Phys Status Solidi B 201:3–65

    Article  Google Scholar 

  4. Chang S, Nakano M, Matsumaru K, Ishizaki K, Takeda M (2006) High-temperature oxidation of sintered β-FeSi2 bodies at elevated temperatures. J Jpn Inst Metals 70:20–24

    Article  Google Scholar 

  5. Uemura K, Nishida I (1988) Thermoelectric semiconductors and their applications. Nikkan-Kogyo, Tokyo. p. 178

    Google Scholar 

  6. Snyder GJ, Toberer ES (2008) Complex thermoelectric materials. Nat Mater 7:105–114

    Article  Google Scholar 

  7. Ito M, Nagi H, Katsuyama S, Majima K (2001) Effects of Ti, Nb and Zr doping on thermoelectric performance of β-FeSi2. J Alloys Compd 315:251–258

    Article  Google Scholar 

  8. Ito M, Nagi N, Oda E, Katsuyama S, Majima K (2002) Effects of P doping on the thermoelectric properties of β-FeSi2. J Appl Phys 91:2138–2142

    Article  Google Scholar 

  9. Gorsse S, Bauer PB, Decourt R, Sellier E (2010) Microstructure engineering design for thermoelectric materials: an approach to minimize thermal diffusivity. Chem Mater 22:988–993

    Article  Google Scholar 

  10. Gorsse S, Bellanger P, Brechet Y, Sellier E, Umarji AM, Ail U (2011) Nanostructuration via solid state transformation as a strategy for improving the thermoelectric efficiency of PbTe alloys. Acta Mater 59:7425–7437

    Article  Google Scholar 

  11. Bellanger P, Gorsse S, Bernard-Granger G, Navone C, Redjaimia A, Vivès S (2015) Effect of microstructure on the thermal conductivity of nanostructured Mg2(Si, Sn) thermoelectric alloys: an experimental and modeling approach. Acta Mater 95:102–110

    Article  Google Scholar 

  12. Perumal S, Gorsse S, Ail U, Prakasam M, Chevalier B, Umarji AM (2013) Thermoelectric properties of chromium disilicide prepared by mechanical alloying. J Mater Sci 48:6018–6024. doi:10.1007/s10853-013-7398-2

    Article  Google Scholar 

  13. Nandihalli N, Lahwal A, Thompson D, Holgate TC, Tritt TM, Dassylva-Raymond V, Kiss LI, Sellier E, Gorsse S, Kleinke H (2013) Thermoelectric properties of composites made of Ni0.05Mo3Sb5.4Te1.6 and fullerene. J Solid State Chem 203:25–30

    Article  Google Scholar 

  14. Perumal S, Gorsse S, Ail U, Prakasam M, Vivès S, Decourt R, Umarji AM (2015) Low thermal conductivity of endogenous manganese silicide/Si composites for thermoelectricity. Mater Lett 155:41–43

    Article  Google Scholar 

  15. Nandihalli N, Gorsse S, Kleinke H (2015) Effects of additions of carbon nanotubes on the thermoelectric properties of Ni0.05Mo3Sb5.4Te1.6. J. Solid State Chem 226:164–169

    Article  Google Scholar 

  16. Heinz NA, Ikeda T, Pei Y, Snyder GJ (2013) Applying quantitative microstructure control in advanced functional composites. Adv Funct Mater 24:2135–2153

    Article  Google Scholar 

  17. Massalsky TB (ed) (1986) Binary alloy phase diagram. ASM, Metals Park, p 1108

    Google Scholar 

  18. Nishida I, Masumoto K, Okamoto M, Kojima T (1985) Formation of FeSi2 from sintered FeSi-Fe2Si5 eutectic alloy. Mater Trans JIM 26:369–374

    Google Scholar 

  19. Jiang J, Matsugi K, Sasaki G, Yanagisawa O (2005) Resistivity study of eutectoid decomposition kinetics of α-Fe2Si5 alloy. Mater Trans 46:720–725

    Article  Google Scholar 

  20. Nagase T, Yamauchi I, Ohnaka I (2001) Eutectoid decomposition in rapidly solidified α-Fe2Si5-based thermoelectric alloys. J Alloys Compd 316:212–219

    Article  Google Scholar 

  21. Yamauchi I, Nagase T, Ohnaka I (1999) Temperature dependence of β-phase transformation in Cu added Fe2Si5 thermoelectric material. J Alloys Compd 292:181

    Article  Google Scholar 

  22. Jiang JX, Sasakawa T, Matsugi K, Sasaki G, Yanagisawa O (2005) Thermoelectric properties of β-FeSi2 with Si dispersoids formed by decomposition of α-Fe2Si5 based alloys. J Alloys Compd 391:115–122

    Article  Google Scholar 

  23. Waldecker G, Meinhold H, Birkholz U (1973) Thermal conductivity of semiconducting and metallic FeSi2. Phys Status Solidi A 15:143–149

    Article  Google Scholar 

  24. Miettinen J (1998) Reassessed thermodynamic solution phase data for ternary Fe-Si-C system. CALPHAD 22:231–256

    Article  Google Scholar 

  25. Volmer M, Weber A (1926) Keimbildung in übersattigen gebilden. Zeitschro Phys Chem 22:197–215

    Google Scholar 

  26. Kim SW, Cho MK, Mishima Y, Choi DC (2003) High temperature thermoelectric properties of p- and n-type β-FeSi2 with some dopants. Intermetallics 11:399–405

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by a research grant from the Indo-French Centre for the Promotion of Advanced Research, IFCPAR/CEFIPRA (Program No. 4008-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Gorsse.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ail, U., Gorsse, S., Perumal, S. et al. Thermal conductivity of β-FeSi2/Si endogenous composites formed by the eutectoid decomposition of α-Fe2Si5 . J Mater Sci 50, 6713–6718 (2015). https://doi.org/10.1007/s10853-015-9225-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9225-4

Keywords

Navigation