Skip to main content

Advertisement

Log in

A strategy to boost electrochemical properties of the graphene oxide–poly(3,4-ethylenedioxythiophene) composites for supercapacitor electrodes

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We report on a strategy to enhance electrochemical capacitive properties of the graphene oxide–poly(3,4-ethylenedioxythiophene) (GO-PEDOT) composites. The basic idea is to convert GO to carboxylated GO (CGO) via carboxylation treatment. Composite electrodes of CGO-doped PEDOT (CGO-PEDOT) are fabricated by in situ electrochemical polymerization, which make adequate use of oxygenated groups on the basal plane of CGO to combine with PEDOT for enhanced supercapacitive properties. During carboxylation, hydroxyl and epoxide groups on GO are converted to carboxyl groups, as characterized by X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. Electrochemical measurements show that CGO-PEDOT electrodes have boosted supercapacitive performances as compared to GO-PEDOT. In CGO nanosheets, the edges and basal planes are both covered with carboxyl groups, providing more active sites for combination with PEDOT coating, in contrast to GO nanosheets that only use edged carboxyl groups. The as-prepared CGO-PEDOT composite electrodes exhibit superior rate capability, high areal specific capacitance (90.9 mF cm−2 at 10 mV s−1), and excellent cycling stability (retaining 99.6% of initial capacitance for 5000 cycles). This work is anticipated to stimulate further research interest for CGO-based composite electrodes in electrochemical energy storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Cheng C, Li S, Thomas A, Kotov NA, Haag R (2017) Functional graphene nanomaterials based architectures: biointeractions, fabrications, and emerging biological applications. Chem Rev 117:1826–1914

    Article  Google Scholar 

  2. Khan U, Kim TH, Ryu H, Seung W, Kim SW (2017) Graphene tribotronics for electronic skin and touch screen applications. Adv Mater 29:1603544

    Article  Google Scholar 

  3. Wu J, Wang JY, Pan DF, Li YC, Jiang CH, Li YB, Jin C, Wang K, Song FQ, Wang GH, Zhang H, Wan JG (2017) Synchronous growth of high-quality bilayer bernal graphene: from hexagonal single-crystal domains to wafer-scale homogeneous films. Adv Funct Mater 27:1605927

    Article  Google Scholar 

  4. Xie QX, Zhao P, Wu SH, Zhang YF (2017) Flexible carbon@graphene composite cloth for advanced lithium-sulfur batteries and supercapacitors with enhanced energy storage capability. J Mater Sci 52:13478–13489. https://doi.org/10.1007/s10853-017-1451-5

    Article  Google Scholar 

  5. Wang SL, Liu NS, Su J, Li LY, Long F, Zou ZG, Jiang XL, Gao YH (2017) Highly stretchable and self-healable supercapacitor with reduced graphene oxide based fiber springs. ACS Nano 11:2066–2074

    Article  Google Scholar 

  6. Zhang LF, Wang WJ, Cheng J, Shi YH, Zhang Q, Dou P, Xu XH (2018) Skeleton networks of graphene wrapped double-layered polypyrrole/polyaniline nanotubes for supercapacitor applications. J Mater Sci 53:787–798. https://doi.org/10.1007/s10853-017-1543-2

    Article  Google Scholar 

  7. Ke QQ, Guan C, Zhang X, Zheng MR, Zhang YW, Cai YQ, Zhang H, Wang J (2017) Surface-charge-mediated formation of H-TiO2@Ni(OH)2 heterostructures for high-performance supercapacitors. Adv Mater 29:1604164

    Article  Google Scholar 

  8. Guo HY, Yeh MH, Lai YC, Zi YL, Wu CS, Wen Z, Hu CG, Wang ZL (2016) All-in-one shape-adaptive self-charging power package for wearable electronics. ACS Nano 10:10580–10588

    Article  Google Scholar 

  9. Liu L, Wang Y, Meng QH, Cao B (2017) A novel hierarchical graphene/polyaniline hollow microsphere as electrode material for supercapacitor applications. J Mater Sci 52:7969–7983. https://doi.org/10.1007/s10853-017-1000-2

    Article  Google Scholar 

  10. Panmand RP, Patil P, Sethi Y, Kadam SR, Kulkarni MV, Gosavi SW, Munirathnam NR, Kale BB (2017) Unique perforated graphene derived from Bougainvillea flowers for high-power supercapacitors: a green approach. Nanoscale 9:4801–4809

    Article  Google Scholar 

  11. Wang HL, Hao QL, Yang XJ, Lu LD, Wang X (2010) Effect of graphene oxide on the properties of its composite with polyaniline. ACS Appl Mater Interfaces 2:821–828

    Article  Google Scholar 

  12. Li NT, Tang SC, Dai YM, Meng XK (2014) The synthesis of graphene oxide nanostructures for supercapacitors: a simple route. J Mater Sci 49:2802–2809. https://doi.org/10.1007/s10853-013-7986-1

    Article  Google Scholar 

  13. De B, Kuila T, Kim NH, Lee JH (2017) Carbon dot stabilized copper sulphide nanoparticles decorated graphene oxide hydrogel for high performance asymmetric supercapacitor. Carbon 122:247–257

    Article  Google Scholar 

  14. Wang M, Han XX, Zhao Y, Li JJ, Ju P, Hao ZM (2017) Tuning size of MoS2 in MoS2/graphene oxide heterostructures for enhanced photocatalytic hydrogen evolution. J Mater Sci. https://doi.org/10.1007/s10853-017-1745-7

    Google Scholar 

  15. Anothumakkool B, Soni R, Bhange SN, Kurungot S (2015) Novel scalable synthesis of highly conducting and robust PEDOT paper for a high performance flexible solid supercapacitor. Energy Environ Sci 8:1339–1347

    Article  Google Scholar 

  16. D’Arcy JM, El-Kady MF, Khine PP, Zhang LH, Lee SH, Davis NR, Liu DS, Yeung MT, Kim SY, Turner CL, Lech AT, Hammond PT, Kaner RB (2014) Vapor-phase polymerization of nanofibrillar poly(3,4-ethylenedioxythiophene) for supercapacitors. ACS Nano 8:1500–1510

    Article  Google Scholar 

  17. Perez-Madrigal MM, Estrany F, Armelin E, Diaz DD, Aleman C (2016) Towards sustainable solid-state supercapacitors: electroactive conducting polymers combined with biohydrogels. J Mater Chem A 4:1792–1805

    Article  Google Scholar 

  18. Liu YQ, Weng B, Razal JM, Xu Q, Zhao C, Hou YY, Seyedin S, Jalili R, Wallace GG, Chen J (2015) High-performance flexible all-solid-state supercapacitor from large free-standing graphene-PEDOT/PSS films. Sci Rep 5:17045

    Article  Google Scholar 

  19. Zhao ZH, Richardson GF, Meng QS, Zhu SM, Kuan HC, Ma J (2016) PEDOT-based composites as electrode materials for supercapacitors. Nanotechnology 27:042001

    Article  Google Scholar 

  20. Azman NHN, Lim HN, Sulaiman Y (2016) Effect of electropolymerization potential on the preparation of PEDOT/graphene oxide hybrid material for supercapacitor application. Electrochim Acta 188:785–792

    Article  Google Scholar 

  21. Wang MC, Jamal R, Wang YJ, Yang L, Liu FF, Abdiryim T (2015) Functionalization of graphene oxide and its composite with poly(3,4-ethylenedioxythiophene) as electrode material for supercapacitors. Nanoscale Res Lett 10:370

    Article  Google Scholar 

  22. Abidin SNJSZ, Azman NHN, Kulandaivalu S, Sulaiman Y (2017) Poly(3,4-ethylenedioxythiophene) doped with carbon materials for high-performance supercapacitor: a comparison study. J Nanomater 2017:5798614

    Google Scholar 

  23. Zhou HH, Zhai HJ, Han GY (2016) Adjust the electrochemical performances of graphene oxide nanosheets-loaded poly(3,4-ethylenedioxythiophene) composites for supercapacitors with ultralong cycle life. J Mater Sci Mater Electron 27:2773–2782

    Article  Google Scholar 

  24. Islam MM, Chidembo AT, Aboutalebi SH, Cardillo D, Liu HK, Konstantinov K, Dou SX (2014) Liquid crystalline graphene oxide/PEDOT:PSS self-assembled 3D architecture for binder-free supercapacitor electrodes. Front Energy Res 2:31

    Article  Google Scholar 

  25. Osterholm A, Lindfors T, Kauppila J, Damlin P, Kvarnstrom C (2012) Electrochemical incorporation of graphene oxide into conducting polymer films. Electrochim Acta 83:463–470

    Article  Google Scholar 

  26. Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224

    Article  Google Scholar 

  27. Hummers WS, Offeman RE, Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Article  Google Scholar 

  28. Xu YX, Bai H, Lu GW, Li C, Shi GQ (2008) Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J Am Chem Soc 130:5856–5857

    Article  Google Scholar 

  29. Sun XM, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S, Dai HJ (2008) Nano-graphene oxide for cellular imaging and drug delivery. Nano Res 1:203–212

    Article  Google Scholar 

  30. Zhang K, Heo N, Shi X, Park JH (2013) Chemically modified graphene oxide-wrapped quasi-micro Ag decorated silver trimolybdate nanowires for photocatalytic applications. J Phys Chem C 117:24023–24032

    Article  Google Scholar 

  31. Imani R, Emami SH, Faghihi S (2015) Nano-graphene oxide carboxylation for efficient bioconjugation applications: a quantitative optimization approach. J Nanopart Res 17:88

    Article  Google Scholar 

  32. Pan N, Guan DB, Yang YT, Huang ZL, Wang RB, Jin YD, Xia CQ (2014) A rapid low-temperature synthetic method leading to large-scale carboxyl graphene. Chem Eng J 236:471–479

    Article  Google Scholar 

  33. Bora C, Dolui SK (2012) Fabrication of polypyrrole/graphene oxide nanocomposites by liquid/liquid interfacial polymerization and evaluation of their optical, electrical and electrochemical properties. Polymer 53:923–932

    Article  Google Scholar 

  34. Bagherzadeh M, Ghahfarokhi ZS, Yazdi EG (2016) Electrochemical and surface evaluation of the anti-corrosion properties of reduced graphene oxide. RSC Adv 6:22007–22015

    Article  Google Scholar 

  35. Yue RR, Wang HW, Bin D, Xu JK, Du YK, Lu WS, Guo J (2015) Facile one-pot synthesis of Pd-PEDOT/graphene nanocomposites with hierarchical structure and high electrocatalytic performance for ethanol oxidation. J Mater Chem A 3:1077–1088

    Article  Google Scholar 

  36. Chen Y, Xu JH, Yang YJ, Zhao YT, Yang WY, Mao XL, He X, Li SB (2016) The preparation and electrochemical properties of PEDOT:PSS/MnO2/PEDOT ternary film and its application in flexible micro-supercapacitor. Electrochim Acta 193:199–205

    Article  Google Scholar 

  37. Han YQ, Ding B, Tong H, Zhang XG (2011) Capacitance properties of graphite oxide/poly(3,4-ethylene dioxythiophene) composites. J Appl Polym Sci 121:892–898

    Article  Google Scholar 

  38. Guo HL, Wang XF, Qian QY, Wang FB, Xia XH (2009) A green approach to the synthesis of graphene nanosheets. ACS Nano 3:2653–2659

    Article  Google Scholar 

  39. Pandey GP, Rastogi AC (2013) Synthesis and characterization of pulsed polymerized poly(3,4-ethylenedioxythiophene) electrodes for high-performance electrochemical capacitors. Electrochim Acta 87:158–168

    Article  Google Scholar 

  40. Zhu CZ, Zhai JF, Wen D, Dong SJ (2012) Graphene oxide/polypyrrole nanocomposites: one-step electrochemical doping, coating and synergistic effect for energy storage. J Mater Chem 22:6300–6306

    Article  Google Scholar 

  41. Liu JP, Jiang J, Bosman M, Fan HJ (2012) Three-dimensional tubular arrays of MnO2–NiO nanoflakes with high areal pseudocapacitance. J Mater Chem 22:2419–2426

    Article  Google Scholar 

  42. Wu ZS, Parvez K, Li S, Yang S, Liu ZY, Liu SH, Feng XL, Muellen K (2015) Alternating stacked graphene-conducting polymer compact films with ultrahigh areal and volumetric capacitances for high-energy micro-supercapacitors. Adv Mater 27:4054–4061

    Article  Google Scholar 

  43. Zhang C, Xing J, Fan HW, Zhang WK, Liao MY, Song Y (2017) Enlarged capacitance of TiO2 nanotube array electrodes treated by water soaking. J Mater Sci 52:3146–3152. https://doi.org/10.1007/s10853-016-0603-3

    Article  Google Scholar 

  44. Zhou HH, Zhai HJ (2016) Rapid preparation of the hybrid of MnO2 dispersed on graphene nanosheets with enhanced supercapacitive performance. Electrochim Acta 215:339–345

    Article  Google Scholar 

  45. Yang M, Hong SB, Yoon JH, Kim DS, Jeong SW, Yoo DE, Lee TJ, Lee KG, Lee SJ, Choi BG (2016) Fabrication of flexible, redoxable, and conductive nanopillar arrays with enhanced electrochemical performance. ACS Appl Mater Interfaces 8:22220–22226

    Article  Google Scholar 

  46. Szkoda M, Trzcinski K, Rysz J, Gazda M, Siuzdak K, Lisowska-Oleksiak A (2017) Electrodes consisting of PEDOT modified by Prussian Blue analogues deposited onto titania nanotubes—their highly improved capacitance. Solid State Ionics 302:197–201

    Article  Google Scholar 

  47. Mao XL, Yang WY, He X, Chen Y, Zhao YT, Zhou YJ, Yang YJ, Xu JH (2017) The preparation and characteristic of poly(3,4-ethylenedioxythiophene)/reduced graphene oxide nanocomposite and its application for supercapacitor electrode. Mater Sci Eng B 216:16–22

    Article  Google Scholar 

  48. Zhou QQ, Li YR, Huang L, Li C, Shi GQ (2014) Three-dimensional porous graphene/polyaniline composites for high-rate electrochemical capacitors. J Mater Chem A 2:17489–17494

    Article  Google Scholar 

  49. Wei HG, Zhu JH, Wu SJ, Wei SY, Guo ZH (2013) Electrochromic polyaniline/graphite oxide nanocomposites with endured electrochemical energy storage. Polymer 54:1820–1831

    Article  Google Scholar 

  50. Peng C, Jin J, Chen GZ (2007) A comparative study on electrochemical co-deposition and capacitance of composite films of conducting polymers and carbon nanotubes. Electrochim Acta 53:525–537

    Article  Google Scholar 

  51. Wang YR, Wei HG, Wang JM, Liu JR, Guo J, Zhang X, Weeks BL, Shen TD, Wei SY, Guo ZH (2015) Electropolymerized polyaniline/manganese iron oxide hybrids with an enhanced color switching response and electrochemical energy storage. J Mater Chem A 3:20778–20790

    Article  Google Scholar 

  52. Weng Z, Su Y, Wang DW, Li F, Du JH, Cheng HM (2011) Graphene-cellulose paper flexible supercapacitors. Adv Energy Mater 1:917–922

    Article  Google Scholar 

  53. Wang X, Gao KZ, Shao ZQ, Peng XQ, Wu X, Wang FJ (2014) Layer-by-layer assembled hybrid multilayer thin film electrodes based on transparent cellulose nanofibers paper for flexible supercapacitors applications. J Power Sources 249:148–155

    Article  Google Scholar 

  54. Zhou HH, Han GY, Fu DY, Chang YZ, Xiao YM, Zhai HJ (2014) Petal-shaped poly(3,4-ethylenedioxythiophene)/sodium dodecyl sulfate-graphene oxide intercalation composites for high-performance electrochemical energy storage. J Power Sources 272:203–210

    Article  Google Scholar 

  55. Wei HG, Wang YR, Guo J, Yan XR, O’Connor R, Zhang X, Shen NZ, Weeks BL, Huang XH, Wei SY, Guo ZH (2015) Electropolymerized polypyrrole nanocoatings on carbon paper for electrochemical energy storage. Chemelectrochem 2:119–126

    Article  Google Scholar 

  56. Xu YF, Hennig I, Freyberg D, Strudwick AJ, Schwab MG, Weitz T, Cha KCP (2014) Inkjet-printed energy storage device using graphene/polyaniline inks. J Power Sources 248:483–488

    Article  Google Scholar 

  57. Qu JY, Gao F, Zhou Q, Wang ZY, Hu H, Li BB, Wan WB, Wang XZ, Qiu JS (2013) Highly atom-economic synthesis of graphene/Mn3O4 hybrid composites for electrochemical supercapacitors. Nanoscale 5:2999–3005

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21601113 and 21573138), Natural Science Foundation of Shanxi Province (2015021079), Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (2017112), and China Postdoctoral Science Foundation (2015M571283). H.J.Z. also gratefully acknowledges support from the Sanjin Scholar Distinguished Professors Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haihan Zhou or Hua-Jin Zhai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Zhi, X. & Zhai, HJ. A strategy to boost electrochemical properties of the graphene oxide–poly(3,4-ethylenedioxythiophene) composites for supercapacitor electrodes. J Mater Sci 53, 5216–5228 (2018). https://doi.org/10.1007/s10853-017-1904-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1904-x

Keywords

Navigation