Skip to main content
Log in

A numerical study on anomalous behavior of piezoelectric response in functionally graded materials

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Finite element-based simulations have been performed on piezoelectric-based functionally graded materials (FGM). PZT (Lead zirconate titanate) and PVDF (Polyvinylidene fluoride) FGM composites have been investigated. Anomalous enhancement in output voltage has been observed at grading index n = 0.05 (Voltage = 210 V), which is 105 and 185% higher than the original material at n = 0 (PVDF) and n = ∞ (PZT), respectively. Further, role of Young’s modulus, dielectric constant, and piezoelectric constant was systematically investigated to understand this enhancement. It is found that performance of FGM not only relies on piezoelectric constants but also largely depends upon values of Young’s modulus and dielectric constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Dong L, Zhao G, Xiong C, Quan H (2009) Effect of piezoelectric particles size distribution on electric properties of PZT/PVDF composites. Acta Mater Compos Sin 4:012–015

    Google Scholar 

  2. Rodel J, Webber KG, Dittmer R, Jo W, Kimura M, Damjanovic D (2015) Transferring lead-free piezoelectric ceramics into application. J Eur Ceram Soc 35(6):1659–1681

    Article  Google Scholar 

  3. Hong C-H, Kim H-P, Choi B-Y, Han H-S, Son JS, Ahn CW, Jo W (2016) Lead-free piezoceramics—Where to move on? J Materiomics 2(1):1–24

    Article  Google Scholar 

  4. Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M (2004) Lead-free piezoceramics. Nature 432(7013):84–87

    Article  Google Scholar 

  5. Rödel J, Jo W, Seifert KT, Anton EM, Granzow T, Damjanovic D (2009) Perspective on the development of lead-free piezoceramics. J Am Ceram Soc 92(6):1153–1177

    Article  Google Scholar 

  6. Ueberschlag P (2001) PVDF piezoelectric polymer. Sens Rev 21(2):118–126

    Article  Google Scholar 

  7. Vinogradov A, Holloway F (1999) Electro-mechanical properties of the piezoelectric polymer PVDF. Ferroelectrics 226(1):169–181

    Article  Google Scholar 

  8. Ploss B, Ploss B, Shin FG, Chan HLW, Choy CL (2000) Pyroelectric or piezoelectric compensated ferroelectric composites. Appl Phys Lett 76(19):2776–2778

    Article  Google Scholar 

  9. Chan HLW, Zhang QQ, Ng WY, Choy CL (2000) Dielectric permittivity of PCLT/PVDF-TRFE nanocomposites. IEEE Trans Dielectr Electr Insul 7(2):204–207

    Article  Google Scholar 

  10. Han P, Pang S, Fan J, Shen X, Pan T (2013) Highly enhanced piezoelectric properties of PLZT/PVDF composite by tailoring the ceramic Curie temperature, particle size and volume fraction. Sens Actuators A 204:74–78

    Article  Google Scholar 

  11. Kuang D, Li R, Pei J (2014) Polyamide 11/poly (vinylidene fluoride)/vinyl acetate-maleic anhydride copolymer as novel blends flexible materials for capacitors. Polymers 6(8):2146–2156

    Article  Google Scholar 

  12. Yao L, Zhao HD, Dong ZY, Sun YF, Gao YF (2012) Laboratory testing of piezoelectric bridge transducers for asphalt pavement energy harvesting key engineering materials. Trans Tech Publ 492:172–175

    Google Scholar 

  13. Santos IA, Rosso JM, Cótica LF, Bonadio TG, Freitas VF, Guo R, Bhalla AS (2016) Dielectric and structural features of the environmentally friendly lead-free PVDF/Ba 0.3 Na 0.7 Ti 0.3 Nb 0.7 O 3 0-3 composite. Curr Appl Phys 16(11):1468–1472

    Article  Google Scholar 

  14. Sharifi Olyaei N, Mohebi MM, Kaveh R (2017) Directional properties of ordered 3‐3 piezocomposites fabricated by sacrificial template. J Am Ceram Soc 100(4):1432–1439

    Article  Google Scholar 

  15. Topolov VY, Bowen C, Bisegna P, Krivoruchko A (2015) New orientation effect in piezo-active 1–3-type composites. Mater Chem Phys 151:187–195

    Article  Google Scholar 

  16. Xu D, Du P, Wang J, Hou P, Huang S, Cheng X (2016) Design and properties of Gaussian-type 1–3 piezoelectric composites. Compos Struct 140:213–216

    Article  Google Scholar 

  17. Topolov VY, Bisegna P, Bowen CR (2014) Orientation effects and anisotropy of properties in 2–2 and related composites, piezo-active composites. Springer, Berlin, pp 43–88

    Google Scholar 

  18. Steinhausen R, Pientschke C, Seifert W, Beige H (2004) In: IEEE Ultrasonics Symposium 2004. Finite element analysis of the thickness mode resonance of piezoelectric 1-3 fibre composites, pp. 1678–1681

  19. Akdogan EK, Allahverdi M, Safari A (2005) Piezoelectric composites for sensor and actuator applications. IEEE Trans Ultrason Ferroelectr Freq Control 52(5):746–775

    Article  Google Scholar 

  20. Topolov VY, Bisegna P, Bowen CR (2013) Piezo-active composites: orientation effects and anisotropy factors. Springer, Berlin

    Google Scholar 

  21. Nan C-W, Weng G (2000) Influence of polarization orientation on the effective properties of piezoelectric composites. J Appl Phys 88(1):416–423

    Article  Google Scholar 

  22. Lam K, Chan H (2005) Piezoelectric and pyroelectric properties of 65PMN-35PT/P (VDF-TrFE) 0–3 composites. Compos Sci Technol 65(7):1107–1111

    Article  Google Scholar 

  23. Ren H, Fan H (2006) The role of piezoelectric rods in 1–3 composite for the hydrostatic response applications. Sens Actuators A 128(1):132–139

    Article  Google Scholar 

  24. Wu C, Kahn M, Moy W (1996) Piezoelectric ceramics with functional gradients: a new application in material design. J Am Ceram Soc 79(3):809–812

    Article  Google Scholar 

  25. Wu X-H, Chen C, Shen Y-P, Tian X-G (2002) A high order theory for functionally graded piezoelectric shells. Int J Solids Struct 39(20):5325–5344

    Article  Google Scholar 

  26. Zhu X, Meng Z (1995) Operational principle, fabrication and displacement characteristics of a functionally gradient piezoelectric ceramic actuator. Sens Actuators A 48(3):169–176

    Article  Google Scholar 

  27. Zhong S, Ban Z-G, Alpay SP, Mantese JV (2006) Large piezoelectric strains from polarization graded ferroelectrics. Appl Phys Lett 89(14):142913. doi:10.1063/1.2358963

    Article  Google Scholar 

  28. Nath R, Zhong S, Alpay SP, Huey BD, Cole MW (2008) Enhanced piezoelectric response from barium strontium titanate multilayer films. Appl Phys Lett 92(1):012916. doi:10.1063/1.2825287

    Article  Google Scholar 

  29. Misirlioglu IB, Alpay SP (2017) Compositionally graded ferroelectrics as wide band gap semiconductors: electrical domain structures and the origin of low dielectric loss. Acta Mater 122:266–276

    Article  Google Scholar 

  30. Ghosh M, Rao MG (2013) Growth mechanism of ZnO nanostructures for ultra-high piezoelectric d 33 coefficient. Mater Express 3(4):319–327

    Article  Google Scholar 

  31. Shaikh AS, Vest RW, Vest GM (1989) Dielectric properties of ultrafine grained BaTiO/sub 3. IEEE Trans Ultrason Ferroelectr Freq Control 36(4):407–412

    Article  Google Scholar 

  32. Li R, Xue B, Pei J (2015) Enhancement of the dielectric performance of PA11/PVDF blends by a solution method with dimethyl sulfoxide. e-Polymers 15(6):439–445

    Article  Google Scholar 

  33. Hosseini-Hashemi S, Taher HRD, Akhavan H, Omidi M (2010) Free vibration of functionally graded rectangular plates using first-order shear deformation plate theory. Appl Math Model 34(5):1276–1291

    Article  Google Scholar 

  34. Erturk A, Inman DJ (2011) Piezoelectric energy harvesting. John Wiley & Sons, Hoboken

    Book  Google Scholar 

  35. Kumar A, Sharma A, Kumar R, Vaish R, Chauhan VS (2014) Finite element analysis of vibration energy harvesting using lead-free piezoelectric materials: a comparative study. J Asian Ceram Soc 2(2):138–143

    Article  Google Scholar 

Download references

Acknowledgement

Rahul Vaish thanks Indian National Science Academy, New Delhi for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul Vaish.

Appendix

Appendix

To model the piezoelectric structure, finite element method has been used. For this study, script of finite element formulation has been written in MATLAB software. The 3D element has been chosen to discretize the piezoelectric cube. 3D element has three mechanical degrees of freedom (u, v, w) and one electrical degree of freedom (V).

In 3D solid element, any point coordinate (x, y, z) within the cube can be written as:

$$ \begin{aligned} x = \sum\limits_{i = 1}^{\text{nnel}} {N_{i} } x_{i} \hfill \\ y = \sum\limits_{i = 1}^{\text{nnel}} {N_{i} } y_{i} \hfill \\ z = \sum\limits_{i = 1}^{\text{nnel}} {N_{i} } z_{i} \hfill \\ \end{aligned} $$
(10)

where N i is the shape function and nnel is number of node in element. x i , y i , and z i are coordinates of the ith node of element.

Similarly, displacement and voltage field can be written as:

$$ \begin{aligned} u = \sum\limits_{i = 1}^{\text{nnel}} {N_{i} } u_{i} \hfill \\ v = \sum\limits_{i = 1}^{\text{nnel}} {N_{i} } v_{i} \hfill \\ w = \sum\limits_{i = 1}^{\text{nnel}} {N_{i} } w_{i} \hfill \\ V = \sum\limits_{i = 1}^{\text{nnel}} {N_{i} } V_{i} \hfill \\ \end{aligned} $$
(11)

u i , v i , and w i are mechanical degrees of freedom and V is electrical degree of freedom in element at the node.

Strain and electrical field can be written as

$$ \begin{aligned} \left\{ \varepsilon \right\} = \left[ B \right]\left\{ q \right\} \hfill \\ \left\{ E \right\} = \left[ {B_{\phi } } \right]\left\{ \phi \right\} \hfill \\ \end{aligned} $$
(12)
$$ \begin{aligned} q = \left\{ {u_{1} \;v_{1} \;w_{1} \ldots u_{n} \;v_{n} \;w_{n} } \right\}^{T} \hfill \\ \phi = \left\{ {V_{1} \;V_{2} \; \ldots V_{n - 1} \;V_{n} } \right\}^{T} \hfill \\ \end{aligned} $$
$$ B = \left[ {\begin{array}{*{20}c} {\frac{{\partial N_{1} }}{\partial x}} & 0 & 0 & \cdots & {\frac{{\partial N_{n} }}{\partial x}} & 0 & 0 \\ 0 & {\frac{{\partial N_{1} }}{\partial y}} & 0 & \cdots & 0 & {\frac{{\partial N_{n} }}{\partial y}} & 0 \\ 0 & 0 & {\frac{{\partial N_{1} }}{\partial z}} & \cdots & 0 & 0 & {\frac{{\partial N_{n} }}{\partial z}} \\ 0 & {\frac{{\partial N_{1} }}{\partial z}} & {\frac{{\partial N_{1} }}{\partial y}} & \cdots & 0 & {\frac{{\partial N_{n} }}{\partial z}} & {\frac{{\partial N_{n} }}{\partial y}} \\ {\frac{{\partial N_{1} }}{\partial z}} & 0 & {\frac{{\partial N_{1} }}{\partial x}} & \cdots & {\frac{{\partial N_{n} }}{\partial z}} & 0 & {\frac{{\partial N_{n} }}{\partial x}} \\ {\frac{{\partial N_{1} }}{\partial y}} & {\frac{{\partial N_{1} }}{\partial x}} & 0 & \cdots & {\frac{{\partial N_{n} }}{\partial y}} & {\frac{{\partial N_{n} }}{\partial x}} & 0 \\ \end{array} } \right] $$
$$ B_{\phi } = \left[ {\begin{array}{*{20}c} {\frac{{\partial N_{1} }}{\partial x}} & {\frac{{\partial N_{2} }}{\partial x}} & \cdot & {\frac{{\partial N_{n} }}{\partial x}} \\ {\frac{{\partial N_{1} }}{\partial y}} & {\frac{{\partial N_{2} }}{\partial y}} & \cdot & {\frac{{\partial N_{n} }}{\partial y}} \\ {\frac{{\partial N_{1} }}{\partial z}} & {\frac{{\partial N_{2} }}{\partial z}} & \cdot & {\frac{{\partial N_{n} }}{\partial z}} \\ \end{array} } \right] $$

where n is total number of nodes.

Strain energy in element:

$$ S.E = \frac{1}{2}\int\limits_{\text{Volume}} {\varepsilon^{T} \sigma dV} $$
$$ S.E = \frac{1}{2}\int\limits_{V} {\left( {\left\{ q \right\}^{T} \left[ B \right]\left[ {C(z)} \right]\left[ B \right]\left\{ q \right\}} \right)dV} +\,\frac{1}{2}\int\limits_{V} {\left( {\left\{ q \right\}^{T} \left( {\left[ B \right]^{T} \left[ {e(z)} \right]^{T} \left[ {B_{\phi } } \right]} \right)\left\{ \phi \right\}} \right)dV} $$
$$ S.E = \frac{1}{2}\left[ {\left\{ q \right\}^{T} \left( {\left[ {K_{uu} } \right]} \right)\left\{ q \right\} + \left\{ q \right\}^{T} \left[ {K_{u\phi } } \right]\left\{ \phi \right\}} \right] $$
(13)

where

$$ K_{uu} = \int\limits_{V} {\left[ B \right]\left[ {C(z)} \right]\left[ B \right]dV} $$
$$ K_{u\phi } = \int\limits_{V} {\left[ B \right]^{T} \left[ {e(z)} \right]^{T} \left[ {B_{\phi } } \right]dV} $$

Electrical energy in element:

$$ E.E = \frac{1}{2}\int\limits_{V} {E^{T} DdV} $$
$$ E.E = \frac{1}{2}\int\limits_{V} {\left( {\phi \left\{ {B_{\phi } } \right\}^{T} \left[ {e(z)} \right]\left[ B \right]\left\{ q \right\} + \phi \left\{ {B_{\phi } } \right\}^{T} \left[ b \right]\left[ {B_{\phi } } \right]\phi } \right)dV} $$
$$ E.E = \frac{1}{2}\left\{ \phi \right\}^{T} \left[ {K_{\phi u} } \right]\left\{ q \right\} + \frac{1}{2}\left\{ \phi \right\}^{T} \left[ {K_{\phi \phi } } \right]\left\{ \phi \right\} $$
(14)

where

$$ \left[ {K_{\phi u} } \right] = \int\limits_{V} {\left\{ {B_{\phi } } \right\}^{T} \left[ {e(z)} \right]\left[ B \right]dV} $$
$$ \left[ {K_{\phi \phi } } \right] = \int\limits_{V} {\left\{ {B_{\phi } } \right\}^{T} \left[ {e(z)} \right]\left[ {B_{\phi } } \right]dV} $$

Kinetic energy in element:

$$ K.E = \frac{1}{2}\int\limits_{V} {\rho (z)\left\{ {\dot{q}} \right\}^{\rm T} \left\{ {\dot{q}} \right\}dV} $$
$$ K.E = \frac{1}{2}\left\{ {\dot{q}} \right\}^{T} \left[ M \right]\left\{ {\dot{q}} \right\} $$
(15)

where

$$ \left[ M \right] = \int\limits_{V} {\rho (z)\left[ N \right]^{T} \left[ N \right]} dV $$

N are the shape functions.

Total external work done on the element:

$$ W^{s} = \int\limits_{{S_{1} }} {\left\{ q \right\}^{T} \left\{ {f_{s} } \right\}ds + \left\{ q \right\}^{T} \left\{ {f_{p} } \right\} - \int\limits_{{S_{2} }} {\left\{ E \right\}^{T} \left\{ {f_{q} } \right\}ds} } $$
(16)

S 1 = surface area on which external force is acting, S 2 = surface area of piezoelectric layer where applied electric charge is acting, \( \left\{ {f_{s} } \right\} \) = surface force intensity, \( \left\{ {f_{p} } \right\} \) = point load, \( \left\{ {f_{q} } \right\} \)  = surface electrical charge density

$$ W^{s} = \left\{ q \right\}^{T} \left\{ {F_{m} } \right\} + \left\{ \phi \right\}^{T} \left\{ {F_{q} } \right\} $$
$$ \left\{ {F_{m} } \right\} = \int\limits_{S} {\left[ N \right]^{T} \left\{ {f_{S} } \right\}dS + \left[ N \right]^{T} \left\{ {f_{p} } \right\}} $$
$$ \left\{ Q \right\} = \int\limits_{{S_{2} }} {\left\{ {B_{\phi } } \right\}^{T} \left\{ {f_{q} } \right\}ds} $$

By using Hamilton’s principle as final equations can be written as

$$ \begin{aligned} \int\limits_{{t_{0} }}^{{t_{f} }} {\delta \left( {L + W^{s} } \right)dt = 0} \hfill \\ \begin{array}{*{20}c} {\text{where}} & {L = K.E - S.E + E.E} \\ \end{array} \hfill \\ \end{aligned} $$

Using Eqs. (13), (14), (15) and (16)

$$ \begin{aligned} \left[ M \right]\left\{ {\ddot{q}} \right\} + \left[ C \right]\left\{ {\dot{q}} \right\} + \left[ {K_{uu} } \right]\left\{ q \right\} + \left[ {K_{u\phi } } \right]\left\{ \phi \right\} = \left\{ {F_{m} } \right\} \hfill \\ \left[ {K_{\phi u} } \right]\left\{ q \right\} + \left[ {K_{\phi \phi } } \right]\left\{ \phi \right\} = \left\{ Q \right\} \hfill \\ \end{aligned} $$

In this study, static case has been considered which reduced the equation further by removing the dynamic force terms (inertia force and damping force)

$$ \begin{aligned} \left[ {K_{uu} } \right]\left\{ q \right\} + \left[ {K_{u\phi } } \right]\left\{ \phi \right\} = \left\{ {F_{m} } \right\} \hfill \\ \left[ {K_{\phi u} } \right]\left\{ q \right\} + \left[ {K_{\phi \phi } } \right]\left\{ \phi \right\} = \left\{ Q \right\} \hfill \\ \end{aligned} $$

As there is no external electrical force applied (Q = 0) final equation can be written as

$$ \begin{aligned} \left[ {K_{uu} } \right]\left\{ q \right\} + \left[ {K_{u\phi } } \right]\left\{ \phi \right\} = \left\{ {F_{m} } \right\} \hfill \\ \left[ {K_{\phi u} } \right]\left\{ q \right\} + \left[ {K_{\phi \phi } } \right]\left\{ \phi \right\} = 0 \hfill \\ \end{aligned} $$

Using these equations displacement and voltage can be calculated.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Sharma, A., Vaish, R. et al. A numerical study on anomalous behavior of piezoelectric response in functionally graded materials. J Mater Sci 53, 2413–2423 (2018). https://doi.org/10.1007/s10853-017-1719-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1719-9

Keywords

Navigation