Skip to main content
Log in

Using modified Halpin Tsai based approach for electromechanical analysis of functionally graded graphene reinforced piezoelectric tile

  • Published:
International Journal of Mechanics and Materials in Design Aims and scope Submit manuscript

Abstract

This study focuses on the electromechanical study of functionally graded graphene reinforced piezoelectric composite (FG-GRPC) structures using the modified Halpin Tsai (MHT) micromechanics model. Two piezoelectric material matrices, namely PZT-5H and PVDF, are reinforced with GPLs, an ultralightweight and highly rigid carbonaceous nanofiller. The developed graphene reinforced piezoelectric composites (GRPC) vary in the thickness direction to form FG-GRPC, with GPLs evenly scattered throughout the material matrix. The MHT model and Rule of the mixture (ROM) are used to determine the effective modulus of elasticity, poisson’s ratio, density, and piezoelectric characteristics of the GRPC structure. The spatial variation in composition across the thickness of FG-GRPC structural tiles is determined by a simple power law distribution. The voltage and power metrics of a circuit are calculated using first order shear deformation theory and Hamilton's approach from the governing differential equations of motion. An exhaustive parametric study is undertaken with an emphasis on the effects of GPL weight percentage, material grading exponent, thickness ratio, and frequency on the circuit metrics of FG-GRPC structures. Our findings indicate that the material grading exponent and a limited number of GPLs considerably improve the circuit parameters of FG-GRPC tiles. This study will demonstrate the required physical insights for coupled modelling of microelectromechanical systems, with applications spanning pressure sensors, small ultrasonic motors, active controllers, and intelligent systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Aabid, A., Raheman, M.A., Ibrahim, Y.E., Anjum, A., Hrairi, M., Parveez, B., Parveen, N., Mohammed Zayan, J.: A systematic review of piezoelectric materials and energy harvesters for industrial applications. Sensors 21, 1–27 (2021). https://doi.org/10.3390/s21124145

    Article  Google Scholar 

  • Adhikari, J., Kumar, A., Kumar, R., Jain, S.C.: Performance enhancement of functionally graded piezoelectric tile by tailoring poling orientation. Mech. Based Des. Struct. Mach. (2021). https://doi.org/10.1080/15397734.2021.1939047

    Article  Google Scholar 

  • Adhikari, J., Kumar, R., Jain, S.C.: Influence of material grading and compositional platinum profile on the functionally graded piezoelectric bridge structure. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. (2022a). https://doi.org/10.1177/14644207221133103

    Article  Google Scholar 

  • Adhikari, J., Kumar, R., Jain, S.C.: Angular poling effect on cymbal piezoelectric structure using rhombohedral and tetragonal PMN-0.33PT for energy harvesting applications. Appl. Phys. A (2022b). https://doi.org/10.1007/s00339-022-05512-1

    Article  Google Scholar 

  • Affdl, J.C.H., Kardos, J.L.: The Halpin-Tsai equations: a review. Polym. Eng. Sci. 16, 344–352 (1976)

    Article  Google Scholar 

  • Bathe, K.-J.: Finite Element Procedures. Klaus-Jurgen Bathe, Hardcover (2006)

    MATH  Google Scholar 

  • Biswas, P., Hoque, N.A., Thakur, P., Saikh, M.M., Roy, S., Khatun, F., Bagchi, B., Das, S.: Highly efficient and durable piezoelectric nanogenerator and photo-power cell based on CTAB modified montmorillonite incorporated PVDF film. ACS Sustain. Chem. Eng. 7, 4801–4813 (2019). https://doi.org/10.1021/acssuschemeng.8b05080

    Article  Google Scholar 

  • Chen, Y., Long, J., Xie, B., Kuang, Y., Chen, X., Hou, M., Gao, J., Liu, H., He, Y., Wong, C.-P.: One-step ultraviolet laser-induced fluorine-doped graphene achieving superhydrophobic properties and its application in deicing. ACS Appl. Mater. Interfaces. 14, 4647–4655 (2022)

    Article  Google Scholar 

  • Das, T.K., Prusty, S.: Graphene-based polymer composites and their applications. Polym. Plast. Technol. Eng. 52, 319–331 (2013)

    Article  Google Scholar 

  • De Villoria, R.G., Miravete, A.: Mechanical model to evaluate the effect of the dispersion in nanocomposites. Acta Mater. 55, 3025–3031 (2007)

    Article  Google Scholar 

  • Dickinson, E.J.F., Ekström, H., Fontes, E.: COMSOL Multiphysics®: finite element software for electrochemical analysis: a mini-review. Electrochem. Commun. 40, 71–74 (2014)

    Article  Google Scholar 

  • Feng, C., Kitipornchai, S., Yang, J.: Nonlinear bending of polymer nanocomposite beams reinforced with non-uniformly distributed graphene platelets (GPLs). Compos. Part B Eng. 110, 132–140 (2017). https://doi.org/10.1016/j.compositesb.2016.11.024

    Article  Google Scholar 

  • García-Macías, E., Rodriguez-Tembleque, L., Sáez, A.: Bending and free vibration analysis of functionally graded graphene vs. carbon nanotube reinforced composite plates. Compos. Struct. 186, 123–138 (2018)

    Article  Google Scholar 

  • Gholami, R., Ansari, R.: Nonlinear harmonically excited vibration of third-order shear deformable functionally graded graphene platelet-reinforced composite rectangular plates. Eng. Struct. 156, 197–209 (2018). https://doi.org/10.1016/j.engstruct.2017.11.019

    Article  Google Scholar 

  • Han, M., Wang, H., Yang, Y., Liang, C., Bai, W., Yan, Z., Li, H., Xue, Y., Wang, X., Akar, B., Zhao, H., Luan, H., Lim, J., Kandela, I., Ameer, G.A., Zhang, Y., Huang, Y., Rogers, J.A.: Three-dimensional piezoelectric polymer microsystems for vibrational energy harvesting, robotic interfaces and biomedical implants. Nat. Electron. 2, 26–35 (2019). https://doi.org/10.1038/s41928-018-0189-7

    Article  Google Scholar 

  • He, X.Q., Ng, T.Y., Sivashanker, S., Liew, K.M.: Active control of FGM plates with integrated piezoelectric sensors and actuators. Int. J. Solids Struct. 38, 1641–1655 (2001)

    Article  MATH  Google Scholar 

  • He, X.Q., Liew, K.M., Ng, T.Y., Sivashanker, S.: A FEM model for the active control of curved FGM shells using piezoelectric sensor/actuator layers. Int. J. Numer. Methods Eng. 54, 853–870 (2002). https://doi.org/10.1002/nme.451

    Article  MATH  Google Scholar 

  • Hong, W., Xu, Y., Lu, G., Li, C., Shi, G.: Transparent graphene/PEDOT–PSS composite films as counter electrodes of dye-sensitized solar cells. Electrochem. Commun. 10, 1555–1558 (2008)

    Article  Google Scholar 

  • Kim, K.B., Cho, J.Y., Hamid, J., Ahn, J.H., Hong, S.D., Woo, S.B., Sung, T.H.: Optimized composite piezoelectric energy harvesting floor tile for smart home energy management. Energy Convers. Manag. 171, 31–37 (2018). https://doi.org/10.1016/j.enconman.2018.05.031

    Article  Google Scholar 

  • Kumar, R., Mishra, B.K., Jain, S.C.: Static and dynamic analysis of smart cylindrical shell. Finite Elem. Anal. Des. 45, 13–24 (2008). https://doi.org/10.1016/j.finel.2008.07.005

    Article  Google Scholar 

  • Lee, H.-J.: Layerwise laminate analysis of functionally graded piezoelectric bimorph beams. J. Intell. Mater. Syst. Struct. 16, 365–371 (2005)

    Article  Google Scholar 

  • Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 80(321), 385–388 (2008)

    Article  Google Scholar 

  • Li, C., Jiang, T., Liu, S., Han, Q.: Dispersion and band gaps of elastic guided waves in the multi-scale periodic composite plates. Aerosp. Sci. Technol. 124, 107513 (2022)

    Article  Google Scholar 

  • Liu, B., Vu-Bac, N., Zhuang, X., Rabczuk, T.: Stochastic multiscale modeling of heat conductivity of Polymeric clay nanocomposites. Mech. Mater. 142, 103280 (2020)

    Article  Google Scholar 

  • Liu, B., Vu-Bac, N., Rabczuk, T.: A stochastic multiscale method for the prediction of the thermal conductivity of Polymer nanocomposites through hybrid machine learning algorithms. Compos. Struct. 273, 114269 (2021)

    Article  Google Scholar 

  • Liu, B., Vu-Bac, N., Zhuang, X., Fu, X., Rabczuk, T.: Stochastic full-range multiscale modeling of thermal conductivity of Polymeric carbon nanotubes composites: a machine learning approach. Compos. Struct. 289, 115393 (2022a)

    Article  Google Scholar 

  • Liu, B., Vu-Bac, N., Zhuang, X., Fu, X., Rabczuk, T.: Stochastic integrated machine learning based multiscale approach for the prediction of the thermal conductivity in carbon nanotube reinforced polymeric composites. Compos. Sci. Technol. 224, 109425 (2022b)

    Article  Google Scholar 

  • Mahamood, R.M., Akinlabi, E.T., Shukla, M., Pityana, S.L.: Functionally graded material: an overview (2012). http://researchspace.csir.co.za/dspace/handle/10204/6548

  • Mao, J.J., Zhang, W.: Linear and nonlinear free and forced vibrations of graphene reinforced piezoelectric composite plate under external voltage excitation. Compos. Struct. 203, 551–565 (2018). https://doi.org/10.1016/j.compstruct.2018.06.076

    Article  Google Scholar 

  • Mao, J.J., Zhang, W.: Buckling and post-buckling analyses of functionally graded graphene reinforced piezoelectric plate subjected to electric potential and axial forces. Compos. Struct. 216, 392–405 (2019). https://doi.org/10.1016/j.compstruct.2019.02.095

    Article  Google Scholar 

  • Meier, R., Kelly, N., Almog, O., Chiang, P.: A piezoelectric energy-harvesting shoe system for podiatric sensing. In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2014. pp. 622–625 (2014) https://doi.org/10.1109/EMBC.2014.6943668

  • Mo, C., Arnold, D., Kinsel, W.C., Clark, W.W.: Modeling and experimental validation of unimorph piezoelectric cymbal design in energy harvesting. J. Intell. Mater. Syst. Struct. 24, 828–836 (2013). https://doi.org/10.1177/1045389X12463459

    Article  Google Scholar 

  • Pashmforoush, F.: Natural frequency prediction of functionally graded graphene-reinforced nanocomposite plates using ensemble learning and support vector machine models. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. (2022). https://doi.org/10.1177/09544062221126641

    Article  Google Scholar 

  • Rafiee, M.A., Rafiee, J., Yu, Z.-Z., Koratkar, N.: Buckling resistant graphene nanocomposites. Appl. Phys. Lett. 95, 223103 (2009)

    Article  Google Scholar 

  • Ramirez, F., Heyliger, P.R., Pan, E.: Free vibration response of two-dimensional magneto-electro-elastic laminated plates. J. Sound Vib. 292, 626–644 (2006). https://doi.org/10.1016/j.jsv.2005.08.004

    Article  Google Scholar 

  • Rashad, M., Pan, F., Tang, A., Asif, M., She, J., Gou, J., Mao, J., Hu, H.: Development of magnesium-graphene nanoplatelets composite. J. Compos. Mater. 49, 285–293 (2015)

    Article  Google Scholar 

  • Rout, M., Hota, S.S., Karmakar, A.: Thermoelastic free vibration response of graphene reinforced laminated composite shells. Eng. Struct. 178, 179–190 (2019). https://doi.org/10.1016/j.engstruct.2018.10.029

    Article  Google Scholar 

  • Sahmani, S., Aghdam, M.M.: Nonlinear instability of axially loaded functionally graded multilayer graphene platelet-reinforced nanoshells based on nonlocal strain gradient elasticity theory. Int. J. Mech. Sci. 131–132, 95–106 (2017). https://doi.org/10.1016/j.ijmecsci.2017.06.052

    Article  Google Scholar 

  • Sahoo, N.G., Bao, H., Pan, Y., Pal, M., Kakran, M., Cheng, H.K.F., Li, L., Tan, L.P.: Functionalized carbon nanomaterials as nanocarriers for loading and delivery of a poorly water-soluble anticancer drug: a comparative study. Chem. Commun. 47, 5235–5237 (2011)

    Article  Google Scholar 

  • Sharma, A., Kumar, A., Susheel, C.K., Kumar, R.: Smart damping of functionally graded nanotube reinforced composite rectangular plates. Compos. Struct. 155, 29–44 (2016)

    Article  Google Scholar 

  • Sharma, S.K., Kumar, S., Kumar, R.: Parametric analysis of hybrid tribo-piezoelectric energy harvester. Mech. Based Des. Struct. Mach. (2022). https://doi.org/10.1080/15397734.2022.2041436

    Article  Google Scholar 

  • Shen, H.-S., Xiang, Y., Fan, Y., Hui, D.: Nonlinear vibration of functionally graded graphene-reinforced composite laminated cylindrical panels resting on elastic foundations in thermal environments. Compos. Part B Eng. 136, 177–186 (2018)

    Article  Google Scholar 

  • Singh, K., Sharma, S., Kumar, R., Talha, M.: Vibration control of cantilever beam using poling tuned piezoelectric actuator. Mech. Based Des. Struct. Mach. (2021). https://doi.org/10.1080/15397734.2021.1891934

    Article  Google Scholar 

  • Song, M., Yang, J., Kitipornchai, S., Zhu, W.: Buckling and postbuckling of biaxially compressed functionally graded multilayer graphene nanoplatelet-reinforced polymer composite plates. Int. J. Mech. Sci. 131–132, 345–355 (2017). https://doi.org/10.1016/j.ijmecsci.2017.07.017

    Article  Google Scholar 

  • Song, X., Peng, C., Peng, S., Zhongyue, Z.: Unit commitment optimization model of wind storage combined system considering peak load regulation of energy storage system. In: Proceedings—2020 International Conference on Intelligent Transportation, Big Data & Smart City (ICITBS). pp. 468–472 (2020). https://doi.org/10.1109/ICITBS49701.2020.00101

  • Sundararajan, N., Prakash, T., Ganapathi, M.: Nonlinear free flexural vibrations of functionally graded rectangular and skew plates under thermal environments. Finite Elem. Anal. Des. 42, 152–168 (2005)

    Article  Google Scholar 

  • Swaminathan, K., Naveenkumar, D.T., Zenkour, A.M., Carrera, E.: Stress, vibration and buckling analyses of FGM plates—a state-of-the-art review. Compos. Struct. 120, 10–31 (2015). https://doi.org/10.1016/j.compstruct.2014.09.070

    Article  Google Scholar 

  • Thai, H.-T., Choi, D.-H.: A simple first-order shear deformation theory for the bending and free vibration analysis of functionally graded plates. Compos. Struct. 101, 332–340 (2013)

    Article  Google Scholar 

  • Vel, S.S., Batra, R.C.: Three-dimensional analytical solution for hybrid multilayered piezoelectric plates. J. Appl. Mech. 67, 558–567 (2000)

    Article  MATH  Google Scholar 

  • Wang, K.F., Wang, B.L.: A mechanical degradation model for bidirectional natural fiber reinforced composites under hydrothermal ageing and applying in buckling and vibration analysis. Compos. Struct. 206, 594–600 (2018). https://doi.org/10.1016/j.compstruct.2018.08.063

    Article  Google Scholar 

  • Wang, Y.Q., Ye, C., Zu, J.W.: Nonlinear vibration of metal foam cylindrical shells reinforced with graphene platelets. Aerosp. Sci. Technol. 85, 359–370 (2019). https://doi.org/10.1016/j.ast.2018.12.022

    Article  Google Scholar 

  • Wu, H., Wang, J., Kang, X., Wang, C., Wang, D., Liu, J., Aksay, I.A., Lin, Y.: Glucose biosensor based on immobilization of glucose oxidase in platinum nanoparticles/graphene/chitosan nanocomposite film. Talanta 80, 403–406 (2009)

    Article  Google Scholar 

  • Wu, Q., Xu, Y., Yao, Z., Liu, A., Shi, G.: Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano 4, 1963–1970 (2010)

    Article  Google Scholar 

  • Wu, H., Yang, J., Kitipornchai, S.: Parametric instability of thermo-mechanically loaded functionally graded graphene reinforced nanocomposite plates. Int. J. Mech. Sci. 135, 431–440 (2018). https://doi.org/10.1016/j.ijmecsci.2017.11.039

    Article  Google Scholar 

  • Yang, B., Kitipornchai, S., Yang, Y.F., Yang, J.: 3D thermo-mechanical bending solution of functionally graded graphene reinforced circular and annular plates. Appl. Math. Model. 49, 69–86 (2017). https://doi.org/10.1016/j.apm.2017.04.044

    Article  MathSciNet  MATH  Google Scholar 

  • Yang, B., Mei, J., Chen, D., Yu, F., Yang, J.: 3D thermo-mechanical solution of transversely isotropic and functionally graded graphene reinforced elliptical plates. Compos. Struct. 184, 1040–1048 (2018). https://doi.org/10.1016/j.compstruct.2017.09.086

    Article  Google Scholar 

  • Yang, L., Huang, H., Xi, Z., Zheng, L., Xu, S., Tian, G., Zhai, Y., Guo, F., Kong, L., Wang, Y.: Simultaneously achieving giant piezoelectricity and record coercive field enhancement in relaxor-based ferroelectric crystals. Nat. Commun. 13, 1–10 (2022)

    Google Scholar 

  • Zaman, I., Kuan, H.-C., Dai, J., Kawashima, N., Michelmore, A., Sovi, A., Dong, S., Luong, L., Ma, J.: From carbon nanotubes and silicate layers to graphene platelets for polymer nanocomposites. Nanoscale 4, 4578–4586 (2012)

    Article  Google Scholar 

  • Zenkour, A.M.: Generalized shear deformation theory for bending analysis of functionally graded plates. Appl. Math. Model. 30, 67–84 (2006)

    Article  MATH  Google Scholar 

  • Zhang, S., Xia, R., Lebrun, L., Anderson, D., Shrout, T.R.: Piezoelectric materials for high power, high temperature applications. Mater. Lett. 59, 3471–3475 (2005)

    Article  Google Scholar 

  • Zhang, X., Tang, Y., Zhang, F., Lee, C.: A novel aluminum–graphite dual-ion battery. Adv. Energy Mater. 6, 1502588 (2016)

    Article  Google Scholar 

  • Zhang, W., Niu, Y., Behdinan, K.: Vibration characteristics of rotating pretwisted composite tapered blade with graphene coating layers. Aerosp. Sci. Technol. 98, 105644 (2020). https://doi.org/10.1016/j.ast.2019.105644

    Article  Google Scholar 

  • Zhang, Q., Xin, C., Shen, F., Gong, Y., Zi, Y., Guo, H., Li, Z., Peng, Y., Zhang, Q., Wang, Z.L.: Human body IoT systems based on the triboelectrification effect: energy harvesting, sensing, interfacing and communication. Energy Environ. Sci. 15, 3688–3721 (2022a)

    Article  Google Scholar 

  • Zhang, Q., Liu, Z., Jiang, X., Peng, Y., Zhu, C., Li, Z.: Experimental investigation on performance improvement of cantilever piezoelectric energy harvesters via escapement mechanism from extremely low-frequency excitations. Sustain. Energy Technol. Assessm. 53, 102591 (2022b)

    Google Scholar 

  • Zhao, Z., Feng, C., Wang, Y., Yang, J.: Bending and vibration analysis of functionally graded trapezoidal nanocomposite plates reinforced with graphene nanoplatelets (GPLs). Compos. Struct. 180, 799–808 (2017). https://doi.org/10.1016/j.compstruct.2017.08.044

    Article  Google Scholar 

  • Zhao, S., Zhang, Y., Zhang, Y., Zhang, W., Yang, J., Kitipornchai, S.: Buckling of functionally graded hydrogen-functionalized graphene reinforced beams based on machine learning-assisted micromechanics models. Eur. J. Mech. 96, 104675 (2022a)

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao, S., Zhang, Y., Zhang, Y., Zhang, W., Yang, J., Kitipornchai, S.: Genetic programming-assisted micromechanical models of graphene origami-enabled metal metamaterials. Acta Mater. 228, 117791 (2022b)

    Article  Google Scholar 

  • Zhou, H., Xu, C., Lu, C., Jiang, X., Zhang, Z., Wang, J., Xiao, X., Xin, M., Wang, L.: Investigation of transient magnetoelectric response of magnetostrictive/piezoelectric composite applicable for lightning current sensing. Sens. Actuators A Phys. 329, 112789 (2021)

    Article  Google Scholar 

  • Zhu, X., Meng, Z.: Operational principle, fabrication and displacement characteristics of a functionally gradient piezoelectric ceramic actuator. Sens. Actuators A Phys. 48, 169–176 (1995)

    Article  Google Scholar 

  • Zhu, B., Dong, Y., Li, Y.: Nonlinear dynamics of a viscoelastic sandwich beam with parametric excitations and internal resonance. Nonlinear Dyn. 94, 2575–2612 (2018). https://doi.org/10.1007/s11071-018-4511-8

    Article  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jitendra Adhikari.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adhikari, J., Kumar, R. & Jain, S.C. Using modified Halpin Tsai based approach for electromechanical analysis of functionally graded graphene reinforced piezoelectric tile. Int J Mech Mater Des 19, 299–318 (2023). https://doi.org/10.1007/s10999-022-09632-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10999-022-09632-7

Keywords

Navigation