Skip to main content
Log in

Micromechanical modeling in determining the transverse elastic moduli and stress distributions of bamboo

  • Composites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In order to enhance the understanding of the microstructural characteristics of bamboo culm within transverse directions, two micromechanics models, Halpin–Tsai (H–T) equations and Mori–Tanaka (M–T) model, are introduced to generate the homogenized moduli in the transverse direction, which cannot be easily predicted using the traditional rule of mixtures that was mostly adopted in the previous literatures. A multi-scale framework is then created by connecting the micromechanics models with structural analysis of bamboo culm cross section, which is treated as concentric composite cylinders composed of fiber vascular bundles and ground tissue with different volume fractions that usually increase from inner periphery to outer periphery. Finally, several numerical examples are illustrated to prove the availability of the present micromechanics models in calculating homogenized moduli and practicing bamboo structural analysis. It has been found that the H–T equations and M–T model usually predict well-matched homogenized moduli, leading to similar stress distributions along the radial direction under symmetric loading boundary conditions. In general, both micromechanics models provide easy predictions of homogenized moduli for future numerical and experimental research of bamboo cross sections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Nogata F, Takahashi H (1995) Intelligent functionally graded material: bamboo. Compos Eng 5(7):743–751

    Article  Google Scholar 

  2. Amada S, Untao S (2001) Fracture properties of bamboo. Compos B Eng 32:451–459

    Article  Google Scholar 

  3. Food and agriculture organization of the United Nations (2010) Global forest resource assessment 2010. Good and agriculture organization of the United Nations, Rome

    Google Scholar 

  4. Grosser D, Liese W (1971) On the anatomy of Asian bamboos, with special reference to their vascular bundles. Wood Sci Technol 5:290–312

    Article  Google Scholar 

  5. Dixon PG, Gibson LJ (2014) The structure and mechanics of moso bamboo material. J R Soc Interface 11(99):20140321

    Article  Google Scholar 

  6. Shao Z-P, Fang C-H, Huang S-X, Tian G-L (2010) Tensile properties of moso bamboo (phyllostachys pubescens) and its components with respect to its fiber-reinforced composite structure. Wood Sci Technol 44:655–666

    Article  Google Scholar 

  7. Li H, Shen S (2011) The mechanical properties of bamboo and vascular bundles. J Mater Res 26(2):2749–2756

    Article  Google Scholar 

  8. Tan T, Rahbar N, Allameh SM et al (2011) Mechanical properties of functionally graded hierarchical bamboo structures. Acta Biomater 7:3796–3803

    Article  Google Scholar 

  9. Garcia JJ, Rangel C, Ghavami K (2012) Experiments with rings to determine the anisotropic elastic constants of bamboo. Constr Build Mater 32:52–57

    Article  Google Scholar 

  10. Sharma B, Harries KA, Ghavami K (2013) Methods of determining transverse mechanical properties of full-culm bamboo. Constr Build Mater 38:627–637

    Article  Google Scholar 

  11. Shang L, Sun Z, Liu X, Jiang Z (2015) A novel method for measuring mechanical properties of vascular bundles in moso bamboo. J Wood Sci 61:562–568

    Article  Google Scholar 

  12. Amada S, Lakes RS (1997) Viscoelastic properties of bamboo. J Mater Sci 32:2693–2697. doi:10.1023/A:1018683308211

    Article  Google Scholar 

  13. Amada S, Munekata T, Nagase Y et al (1996) The mechanical structures of bamboos in viewpoint of functionally gradient and composite materials. J Compos Mater 30(7):800–819

    Article  Google Scholar 

  14. Lee PH, Odlin M, Yin H (2014) Development of a hollow cylinder test for the elastic modulus distribution and the ultimate strength of bamboo. Constr Build Mater 51:235–243

    Article  Google Scholar 

  15. Wang YZ, Zhang CL, Chen WQ (2015) An analytical model to predict material gradient and anisotropy in bamboo. Acta Mech. doi:10.1007/s00707-015-1514-0

    Google Scholar 

  16. Zhou A, Huang D, Li H, Su Y (2012) Hybrid approach to determine the mechanical parameters of fibers and matrixes of bamboo. Constr Build Mater 35:191–196

    Article  Google Scholar 

  17. Silva ECN, Walters MC, Paulino GH (2006) Modeling bamboo as a functionally graded material: lessons for the analysis of affordable materials. J Mater Sci 41:6991–7004. doi:10.1007/s10853-006-0232-3

    Article  Google Scholar 

  18. Askarinejad S, Kotowski P, Shalchy F, Rahbar N (2015) Effects of humidity on shear behavior of bamboo. Theor Appl Mech Lett 5:236–243

    Article  Google Scholar 

  19. Youssefian S, Rahbar N (2015) Molecular origin of strength and stiffness in bamboo fibrils. Sci Rep. doi:10.1038/srep11116

    Google Scholar 

  20. Sato M, Inoue A, Shima H (2017) Bamboo-inspired optimal design for functionally graded hollow cylinders. PLoS ONE. doi:10.1371/journal.pone.0175029

    Google Scholar 

  21. Ray AK, Das SK, Mondal S (2004) Microstructural characterization of bamboo. J Mater Sci 39:1055–1060. doi:10.1023/B:JMSC.0000012943.27090.8f

    Article  Google Scholar 

  22. Ray AK, Mondal S, Das SK, Ramachandrarao P (2005) Bamboo—a functionally graded composite—correlation between microstructure and mechanical strength. J Mater Sci 40:5249–5253. doi:10.1007/s10853-005-4419-9

    Article  Google Scholar 

  23. Page DH, El-Hosseiny F, Winkler K, Lancaster APS (1977) Elastic modulus of single wood pulp fibers. Tappi 60:114–117

    Google Scholar 

  24. Cichocki FR Jr, Thomason JL (2002) Thermoelastic anisotropy of a natural fiber. Compos Sci Technol 62(5):669–678

    Article  Google Scholar 

  25. Madsen B, Hoffmeyer P, Thomsen AB, Lihholt H (2007) Hemp yarn reinforced composites—I. Yarn characteristics. Compos A 38:2194–2203

    Article  Google Scholar 

  26. Madsen B, Hoffmeyer P, Lihholt H (2007) Hemp yarn reinforced composites—II. Tensile properties. Compos A 38:2204–2215

    Article  Google Scholar 

  27. Drago AS, Pindera M-J (2007) Micro-macromechanical analysis of heterogeneous materials: macroscopically homogeneous vs periodic microstructures. Compos Sci Technol 67:1243–1263

    Article  Google Scholar 

  28. Hill R (1965) A self-consistent mechanics of composite materials. J Mech Phys Solids 13(4):213–222

    Article  Google Scholar 

  29. Halpin JC, Kardos JL (1976) The Halpin–Tsai equations: a review. Polym Eng Sci 16(5):344–352

    Article  Google Scholar 

  30. Adams DF, Doner DR (1967) Transverse normal loading of a unidirectional composite. J Compos Mater 1:152–164

    Article  Google Scholar 

  31. Hewitt RL, de Malherbe MC (1970) An approximation for the longitudinal shear modulus of continuous fibre composites. J Compos Mater 4(2):280–282

    Article  Google Scholar 

  32. Mori T, Tanaka K (1973) Average stress in the matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 21:571–574

    Article  Google Scholar 

  33. Benveniste Y (1987) A new approach to the application of Mori–Tanaka’s theory in composite materials. Mech Mater 6:147–157

    Article  Google Scholar 

  34. Eshelby JD (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc R Soc A 241:376–396

    Article  Google Scholar 

  35. Pindera M-J, Khatam H, Drago AS, Bansal Y (2009) Micromechanics of spatially uniform heterogeneous media: a critical review and emerging approaches. Compos B 40:349–378

    Article  Google Scholar 

  36. Wang G (2016) Generalized locally exact homogenization theory for unidirectionally reinforced composites. Ph.D. dissertation, University of Virginia

  37. Jones RM (1999) Mechanics of composite materials, 2nd edn. Taylor and Francis, New York

    Google Scholar 

  38. Wang G, Pindera M-J (2017) Tailoring the moduli of composites using hollow reinforcement. Compos Struct 160:838–853

    Article  Google Scholar 

  39. Wang G, Pindera M-J (2017) Elasticity-based microstructural optimization: an integrated multiscale framework. Mater Des 132:337–348

    Article  Google Scholar 

  40. Kennedy J, Eberhart R (1995) Particle swarm optimization. In Proceedings IEEE international conference on neural networks, pp 1942–1948

Download references

Acknowledgements

The authors acknowledge the generous permission Prof. Dongsheng Huang at Nanjing Forestry University for providing source of Fig. 2 to illustrate the RVE of bamboo culm cross section. The corresponding author has also benefited from the communications with Professors W. Q. Chen and C. L. Zhang of Zhejiang University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guannan Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Wang, G. & Wang, Y. Micromechanical modeling in determining the transverse elastic moduli and stress distributions of bamboo. J Mater Sci 53, 2553–2565 (2018). https://doi.org/10.1007/s10853-017-1692-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1692-3

Keywords

Navigation