Skip to main content
Log in

Local degradation pathways in lithium-rich manganese–nickel–cobalt oxide epitaxial thin films

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The electrochemical performance and microstructure of positive electrodes are intimately linked. As such, developing batteries resistance to capacity and voltage fade requires understanding these underlying structure–property relationships and their evolution with operation. Epitaxial films of a Li-rich manganese–nickel–cobalt oxide cathode material were deposited on (100)- and (111)-oriented SrRuO3/SrTiO3 substrates. Cyclic voltammetry and impedance spectroscopy tracked the response of these positive electrode materials, while the microstructure of the pristine and cycled films was characterized using transmission electron microscopy. Energy-dispersive X-ray spectroscopy identifies compositional fluctuations in as-deposited films. Phase transformations and dissolution were observed after electrochemical testing. There is a correlation between both local composition and substrate orientation (i.e., surface faceting) and what degradation pathways are active. Regions with comparatively higher concentrations of Ni and Co were more resistant to dissolution and unfavorable phase transformations than those with relatively more Mn. As such, a global composition metric may not be an accurate predictor of degradation and performance. Rather possessing the synthetic ability to engineer the chemical profile as well as characterizing it, pose a challenge and opportunity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Sheu SP, Yao CY, Chen JM, Chiou YC (1997) Influence of the LiCoO2 particle size on the performance of lithium-ion batteries. J Power Sources 68:533–535

    Article  Google Scholar 

  2. Yamada I, Iriyama Y, Abe T, Ogumi Z (2007) Lithium-ion transfer on a LixCoO2 thin film electrode prepared by pulsed laser deposition—Effect of orientation. J Power Sources 172:933–937

    Article  Google Scholar 

  3. Takeuchi S, Tan H, Bharathi KK, Stafford GR, Shin J, Yasui S, Takeuchi I, Bendersky LA (2015) Epitaxial LiCoO2 films as a model system for fundamental electrochemical studies of positive electrodes. ACS Appl Mater Interfaces 7:7901–7911

    Article  Google Scholar 

  4. Lee Y-G, Choi N-S, Park J-K (2002) Effect of cathode binder on electrochemical properties of lithium rechargeable polymer batteries. J Power Sources 112:61–66

    Article  Google Scholar 

  5. Naoaki Yabuuchi YK, Misaki K, Matsuyama T, Komaba S (2015) Electrochemical properties of LiCoO2 electrodes with latex binders on high-voltage exposure. J Electrochem Soc 162:A538–A544

    Article  Google Scholar 

  6. Hong JK, Lee JH, Oh SM (2002) Effect of carbon additive on electrochemical performance of LiCoO2 composite cathodes. J Power Sources 111:90–96

    Article  Google Scholar 

  7. Mizuno F, Hayashi A, Tadanaga K, Tatsumisago M (2005) Effects of conductive additives in composite positive electrodes on charge-discharge behaviors of all-solid-state lithium secondary batteries. J Electrochem Soc 152:A1499–A1503

    Article  Google Scholar 

  8. Hirayama M, Sonoyama N, Ito M, Minoura M, Mori D, Yamada A, Tamura K, Mizuki JI, Kanno R (2007) Characterization of electrode/electrolyte interface with X-ray reflectometry and epitaxial-film LiMn2O4 electrode. J Electrochem Soc 154:A1065–A1072

    Article  Google Scholar 

  9. Lu Z, MacNeil DD, Dahn JR (2001) Layered cathode materials Li[NixLi(1/3–2x/3)Mn(2/3 − x/3)]O2 for lithium-ion batteries. Electrochem Solid-State Lett 4:A191–A194

    Article  Google Scholar 

  10. Lu Z, Beaulieu LY, Donaberger RA, Thomas CL, Dahn JR (2002) Synthesis, structure, and electrochemical behavior of Li[NixLi1/3–2x/3Mn2/3−x/3]O2. J Electrochem Soc 149:A778–A791

    Article  Google Scholar 

  11. Armstrong AR, Holzapfel M, Novák P, Johnson CS, Kang S-H, Thackeray MM, Bruce PG (2006) Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2. J Am Chem Soc 128:8694–8698

    Article  Google Scholar 

  12. Fell CR, Carroll KJ, Chi M, Meng YS (2010) Synthesis–structure–property relations in layered, “Li-excess” oxides electrode materials Li[Li1/3–2x/3NixMn2/3−x/3]O2 (x = 1/3, 1/4, and 1/5). J Electrochem Soc 157:A1202–A1211

    Article  Google Scholar 

  13. Johnson CS, Li N, Lefief C, Vaughey JT, Thackeray MM (2008) Synthesis, characterization and electrochemistry of lithium battery electrodes: xLi2MnO3·(1 − x)LiMn0.333Ni0.333Co0.333O2 (0 ≤ x ≤ 0.7). Chem Mater 20:6095–6106

    Article  Google Scholar 

  14. Amalraj F, Kovacheva D, Talianker M, Zeiri L, Grinblat J, Leifer N, Goobes G, Markovsky B, Aurbach D (2010) Synthesis of integrated cathode materials xLi2MnO3·(1 − x)LiMn1/3Ni1/3Co1/3O2 (x = 0.3, 0.5, 0.7) and studies of their electrochemical behavior. J Electrochem Soc 157:A1121–A1130

    Article  Google Scholar 

  15. Martha SK, Nanda J, Veith GM, Dudney NJ (2012) Electrochemical and rate performance study of high-voltage lithium-rich composition: Li1.2Mn0.525Ni0.175Co0.1O2. J Power Sources 199:220–226

    Article  Google Scholar 

  16. Nishi Y (2001) Lithium ion secondary batteries; past 10 years and the future. J Power Sources 100:101–106

    Article  Google Scholar 

  17. Mizushima K, Jones PC, Wiseman PJ, Goodenough JB (1980) LixCoO2 (0 < x≤1): a new cathode material for batteries of high energy density. Mater Res Bull 15:783–789

    Article  Google Scholar 

  18. Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104:4271–4302

    Article  Google Scholar 

  19. Chen R, Whittingham MS (1997) Cathodic behavior of alkali manganese oxides from permanganate. J Electrochem Soc 144:L64–L67

    Article  Google Scholar 

  20. Armstrong AR, Bruce PG (1996) Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries. Nature 381:499–500

    Article  Google Scholar 

  21. Reimers JN, Rossen E, Jones CD, Dahn JR (1993) Structure and electrochemistry of LixFeyNi1-yO2. Solid State Ionics 61:335–344

    Article  Google Scholar 

  22. Dunn LGJB, Kelly JC, James C, Gallagher KG (2015) The significance of Li-ion batteries in electric vehicle life-cycle energy and emissions and recycling’s role in its reduction. Energy Environ Sci 8:158–168

    Article  Google Scholar 

  23. Myung ST, Komaba S, Kumagai N (2004) Effect of excess lithium on LiNi0.5Mn0.5O2+δ and its electrochemistry as lithium insertion material. Solid State Ionics 170:139–144

    Article  Google Scholar 

  24. Rougier A, Saadoune I, Gravereau P, Willmann P, Delmas C (1996) Effect of cobalt substitution on cationic distribution in LiNi1 − yCoyO2 electrode materials. Solid State Ionics 90:83–90

    Article  Google Scholar 

  25. Lu Z, MacNeil DD, Dahn JR (2001) Layered Li[NixCo1-2xMnx]O2 cathode materials for lithium-ion batteries. Electrochem Solid-State Lett 4:A200–A203

    Article  Google Scholar 

  26. Spahr ME, Novák P, Haas O, Nesper R (1997) Cycling performance of novel lithium insertion electrode materials based on the Li-Ni-Mn-O system. J Power Sources 68(1997):629–633

    Article  Google Scholar 

  27. Nitta Y, Okamura K, Haraguchi K, Kobayashi S, Ohta A (1995) Crystal structure study of LiNi1-xMnxO2. J Power Sources 54:511–515

    Article  Google Scholar 

  28. Rossen E, Jones CDW, Dahn JR (1992) Structure and electrochemistry of LixMnyNi1−yO2. Solid State Ionics 57:311–318

    Article  Google Scholar 

  29. Johnson CS, Li N, Vaughey JT, Hackney SA, Thackeray MM (2005) Lithium–manganese oxide electrodes with layered–spinel composite structures xLi2MnO(1 − x)Li1 + yMn2−yO4 (0 < x < 1, 0 ≤ y ≤ 0.33) for lithium batteries. Electrochem Commun 7:528–536

    Article  Google Scholar 

  30. Thackeray MM, Johnson CS, Vaughey JT, Li N, Hackney SA (2005) Advances in manganese-oxide ‘composite’ electrodes for lithium-ion batteries. J Mater Chem 15:2257–2267

    Article  Google Scholar 

  31. Mohanty D, Sefat AS, Kalnaus S, Li J, Meisner RA, Payzant EA, Abraham DP, Wood DL, Daniel C (2013) Investigating phase transformation in the Li1.2Co0.1Mn0.55Ni0.15O2 lithium-ion battery cathode during high-voltage hold (4.5 V) via magnetic, X-ray diffraction and electron microscopy studies. J Mater Chem A 1:6249–6261

    Article  Google Scholar 

  32. Li Y, Bettge M, Polzin B, Zhu Y, Balasubramanian M, Abraham DP (2013) Understanding long-term cycling performance of Li1.2Ni0.15Mn0.55Co0.1O2–graphite lithium-ion cells. J Electrochem Soc 160:A3006–A3019

    Article  Google Scholar 

  33. Yu X, Lyu Y, Gu L, Wu H, Bak S-M, Zhou Y, Amine K, Ehrlich SN, Li H, Nam K-W, Yang X-Q (2014) Understanding the rate capability of high-energy-density Li-rich layered Li1.2Ni0.15Co0.1Mn0.55O2 cathode materials. Adv Energy Mater 4:13–00950

    Article  Google Scholar 

  34. Tsuyoshi O, Kazunori T (2011) Epitaxial thin-film growth of SrRuO3, Sr3Ru2O7, and Sr2RuO4 from a SrRuO3 target by pulsed laser deposition. Appl Phys Express 4:025501

    Article  Google Scholar 

  35. Trask SE, Li Y, Kubal JJ, Bettge M, Polzin BJ, Zhu Y, Jansen AN, Abraham DP (2014) From coin cells to 400 mAh pouch cells: enhancing performance of high-capacity lithium-ion cells via modifications in electrode constitution and fabrication. J Power Sources 259:233–244

    Article  Google Scholar 

  36. Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44:1272–1276

    Article  Google Scholar 

  37. Stadelmann PA (1987) EMS-a software package for electron diffraction analysis and HREM image simulation in materials science. Ultramicroscopy 21:131–145

    Article  Google Scholar 

  38. Kang S-H, Kempgens P, Greenbaum S, Kropf AJ, Amine K, Thackeray MM (2007) Interpreting the structural and electrochemical complexity of 0.5Li2MnO3·0.5LiMO2 electrodes for lithium batteries (M = Mn0.5-xNi0.5-xCo2x, 0 ≤ x ≤ 0.5). J Mater Chem 17:2069

    Article  Google Scholar 

  39. Yoon W-S, Paik Y, Yang X-Q, Balasubramanian M, McBreen J, Grey CP (2002) Investigation of the local structure of the LiNi0.5Mn0.5O2 cathode material during electrochemical cycling by X-ray absorption and NMR spectroscopy. Electrochem Solid-State Lett 5:A263–A266

    Article  Google Scholar 

  40. Li Y, Bareño J, Bettge M, Abraham DP (2015) Unexpected voltage fade in LMR-NMC oxides cycled below the “activation” plateau. J Electrochem Soc 162:A155–A161

    Article  Google Scholar 

  41. Lu Z, Dahn JR (2002) Understanding the anomalous capacity of Li/Li[NixLi(1/3–2x/3)Mn(2/3−x/3)]O2 cells using in situ X-ray diffraction and electrochemical studies. J Electrochem Soc 149:A815–A822

    Article  Google Scholar 

  42. Kim JS, Johnson CS, Vaughey JT, Thackeray MM (2006) Pre-conditioned layered electrodes for lithium batteries. J Power Sources 153:258–264

    Article  Google Scholar 

  43. Robertson AD, Bruce PG (2004) Overcapacity of Li[NixLi1/3–2x/3Mn2/3−x/3]O2 electrodes. Electrochem Solid-State Lett 7:A294–A298

    Article  Google Scholar 

  44. Bard AJ, Faulkner LR (2001) electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  45. Dokko K, Mohamedi M, Fujita Y, Itoh T, Nishizawa M, Umeda M, Uchida I (2001) Kinetic characterization of single particles of LiCoO2 by AC impedance and potential step methods. J Electrochem Soc 148:A422–A426

    Article  Google Scholar 

  46. Dokko K, Mohamedi M, Umeda M, Uchida I (2003) Kinetic study of Li-ion extraction and insertion at LiMn2O4 single particle electrodes using potential step and impedance methods. J Electrochem Soc 150:A425–A429

    Article  Google Scholar 

  47. Mohanty D, Li J, Abraham DP, Huq A, Payzant EA, Wood DL, Daniel C (2014) Unraveling the voltage-fade mechanism in high-energy-density lithium-ion batteries: origin of the tetrahedral cations for spinel conversion. Chem Mater 26:6272–6280

    Article  Google Scholar 

  48. Johnston-Peck AC, Takeuchi S, Bharathi KK, Herzing AA, Bendersky LA (2017) Domain formation in lithium-rich manganese-nickel-cobalt-oxide epitaxial thin films and implications for interpretation of electrochemical behavior Submitted

  49. Shukla AK, Ramasse QM, Ophus C, Duncan H, Hage F, Chen G (2015) Unravelling structural ambiguities in lithium- and manganese-rich transition metal oxides. Nat Commun 6:8711

    Article  Google Scholar 

  50. Johnston-Peck AC, Levin I, Herzing AA, Bendersky LA (2016) Structural studies of Li1.2Mn0.55Ni0.15Co0.1O2 electrode material. Mater Charact 119:120–128

    Article  Google Scholar 

  51. Shukla AK, Ophus C, Gammer C, Ramasse Q (2016) Study of Structure of Li- and Mn-rich Transition Metal Oxides Using 4D-STEM. Microsc Microanal 22:494–495

    Article  Google Scholar 

  52. Mohanty D, Huq A, Payzant EA, Sefat AS, Li J, Abraham DP, Wood DL, Daniel C (2013) Neutron diffraction and magnetic susceptibility studies on a high-voltage Li1.2Mn0.55Ni0.15Co0.10O2 lithium ion battery cathode: insight into the crystal structure. Chem Mater 25:4064–4070

    Article  Google Scholar 

  53. Bendersky LA, Tan H, Bharathi Karuppanan K, Li Z-P, Johnston-Peck AC (2017) Crystallography and growth of epitaxial oxide films for fundamental studies of cathode materials used in advanced Li-Ion batteries. Crystals 7:127

    Article  Google Scholar 

  54. Jarvis KA, Wang C-C, Knight JC, Rabenberg L, Manthiram A, Ferreira PJ (2016) Formation and effect of orientation domains in layered oxide cathodes of lithium-ion batteries. Acta Mater 108:264–270

    Article  Google Scholar 

  55. Yan P, Xiao L, Zheng J, Zhou Y, He Y, Zu X, Mao SX, Xiao J, Gao F, Zhang J-G, Wang C-M (2015) Probing the degradation mechanism of Li2MnO3 cathode for Li-ion batteries. Chem Mater 27:975–982

    Article  Google Scholar 

  56. Phillips PJ, Bareño J, Li Y, Abraham DP, Klie RF (2015) On the localized nature of the structural transformations of Li2MnO3 following electrochemical cycling. Adv Energy Mater 5:1501252

    Article  Google Scholar 

  57. Lee E, Persson KA (2014) Structural and chemical evolution of the layered Li-Excess LixMnO3 as a function of Li content from first-principles calculations. Adv Energy Mater 4:1400498

    Article  Google Scholar 

  58. Ceder G, Van der Ven A (1999) Phase diagrams of lithium transition metal oxides: investigations from first principles. Electrochim Acta 45:131–150

    Article  Google Scholar 

  59. Qian D, Xu B, Chi M, Meng YS (2014) Uncovering the roles of oxygen vacancies in cation migration in lithium excess layered oxides. Phys Chem Chem Phys 16:14665–14668

    Article  Google Scholar 

  60. Gummow RJ, de Kock A, Thackeray MM (1994) Improved capacity retention in rechargeable 4 V lithium/lithium-manganese oxide (spinel) cells. Solid State Ionics 69:59–67

    Article  Google Scholar 

  61. Choi W, Manthiram A (2006) Comparison of metal ion dissolutions from lithium ion battery cathodes. J Electrochem Soc 153:A1760–A1764

    Article  Google Scholar 

  62. Jang DH, Shin YJ, Oh SM (1996) Dissolution of spinel oxides and capacity losses in 4 V Li/LixMn2O4 cells. J Electrochem Soc 143:2204–2211

    Article  Google Scholar 

  63. Kan WH, Huq A, Manthiram A (2016) Exploration of a metastable normal spinel phase diagram for the quaternary Li–Ni–Mn–Co–O system. Chem Mater 28:1832–1837

    Article  Google Scholar 

  64. Bak S-M, Nam K-W, Chang W, Yu X, Hu E, Hwang S, Stach EA, Kim K-B, Chung KY, Yang X-Q (2013) Correlating structural changes and gas evolution during the thermal decomposition of charged LixNi0.8Co0.15Al0.05O2 cathode materials. Chem Mater 25:337–351

    Article  Google Scholar 

  65. Delmas C, Ménétrier M, Croguennec L, Saadoune I, Rougier A, Pouillerie C, Prado G, Grüne M, Fournès L (1999) An overview of the Li(Ni, M)O2 systems: syntheses, structures and properties. Electrochim Acta 45:243–253

    Article  Google Scholar 

  66. Reed J, Ceder G (2004) Role of electronic structure in the susceptibility of metastable transition-metal oxide structures to transformation. Chem Rev 104:4513–4534

    Article  Google Scholar 

  67. Mukhopadhyay A, Sheldon BW (2014) Deformation and stress in electrode materials for Li-ion batteries. Prog Mater Sci 63:58–116

    Article  Google Scholar 

  68. Choi S, Manthiram A (2002) Factors influencing the layered to spinel-like phase transition in layered oxide cathodes. J Electrochem Soc 149:A1157–A1163

    Article  Google Scholar 

  69. Dixit H, Zhou W, Idrobo J-C, Nanda J, Cooper VR (2014) Facet-dependent disorder in pristine high-voltage lithium–manganese-rich cathode material. ACS Nano 8:12710–12716

    Article  Google Scholar 

  70. Devaraj A, Gu M, Colby R, Yan P, Wang CM, Zheng JM, Xiao J, Genc A, Zhang JG, Belharouak I, Wang D, Amine K, Thevuthasan S (2015) Visualizing nanoscale 3D compositional fluctuation of lithium in advanced lithium-ion battery cathodes. Nat Commun 6:8014

    Article  Google Scholar 

  71. Trease NM, Seymour ID, Radin MD, Liu H, Liu H, Hy S, Chernova N, Parikh P, Devaraj A, Wiaderek KM, Chupas PJ, Chapman KW, Whittingham MS, Meng YS, Van der Van A, Grey CP (2016) Identifying the distribution of Al3+ in LiNi0.8Co0.15Al0.05O2. Chem Mater 28:8170–8180

    Article  Google Scholar 

  72. Brown CR, McCalla E, Watson C, Dahn JR (2015) Combinatorial study of the Li–Ni–Mn–Co oxide pseudoquaternary system for use in Li–Ion battery materials research. ACS Comb Sci 17:381–391

    Article  Google Scholar 

  73. Yan P, Zheng J, Zheng J, Wang Z, Teng G, Kuppan S, Xiao J, Chen G, Pan F, Zhang J-G, Wang C-M (2016) Ni and Co segregations on selective surface facets and rational design of layered lithium transition-metal oxide cathodes. Adv Energy Mater 6:1502455

    Article  Google Scholar 

Download references

Acknowledgements

We thank Bryant J. Polzin and Andrew N. Jansen (Argonne National Laboratory) for providing the HE5050 powder. This research was performed, while A.C.J.-P. held a National Research Council Research Associateship Award at the National Institute of Standards and Technology. S.T. acknowledges support from the US Department of Commerce, National Institute of Standards and Technology, under financial assistance Award 70NANB16H107.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aaron C. Johnston-Peck or Leonid A. Bendersky.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Disclaimer Certain commercial equipment and materials are identified in this paper in order to specify adequately the experimental procedure. In no case does such identification imply recommendations by the National Institute of Standards and Technology nor does it imply that the material or equipment identified is necessarily the best available for this purpose.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 11354 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnston-Peck, A.C., Takeuchi, S., Bharathi, K.K. et al. Local degradation pathways in lithium-rich manganese–nickel–cobalt oxide epitaxial thin films. J Mater Sci 53, 1365–1379 (2018). https://doi.org/10.1007/s10853-017-1593-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1593-5

Keywords

Navigation