Skip to main content
Log in

Epitaxial growth and magnetic properties of h-LuFeO3 thin films

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this paper, the epitaxial hexagonal LuFeO3 (h-LuFeO3) thin films with c-axis-oriented single phase, smooth surface were grown on YSZ (111) substrates by pulsed laser deposition method. Furthermore, a structural distortion of increased lattice constant of c is found in the epitaxial h-LuFeO3 thin films. Moreover, the epitaxial h-LuFeO3 thin films show room-temperature ferromagnetism. The coercive field and remnant magnetization of the epitaxial h-LuFeO3 thin film decrease with the increase in the test temperature from 50 to 300 K. The study would be of benefit to the room-temperature single-phase multiferroic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Catalan G, Scott JF (2009) Physics and applications of bismuth ferrite. Adv Mater 21(24):2463–2485

    Article  Google Scholar 

  2. Wang J, Neaton JB, Zheng H et al (2003) Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299(5613):1719–1722

    Article  Google Scholar 

  3. Liu XB, Ding NF, Jiang AQ et al (2012) The improved polarization retention through high-field charge injection in highly strained BiFeO3 thin films with preferred domain orientations. Appl Phys Lett 100(13):132901

    Article  Google Scholar 

  4. Lee JH, Jeong YK, Park JH et al (2011) Spin-canting-induced improper ferroelectricity and spontaneous magnetization reversal in SmFeO3. Phys Rev Lett 107(11):117201

    Article  Google Scholar 

  5. Schmid H (1994) Multi-ferroic magnetoelectrics. Ferroelectrics 162(1):317–338

    Article  Google Scholar 

  6. Khomskii D (2009) Trend: classifying multiferroics: mechanisms and effects. Physics 2:20–27

    Article  Google Scholar 

  7. Karimi S, Reaney IM, Han Y et al (2009) Crystal chemistry and domain structure of rare-earth doped BiFeO3 ceramics. J Mater Sci 44(19):5102–5112. doi:10.1007/s10853-009-3545-1

    Article  Google Scholar 

  8. Mao AJ, Tian H, Kuang XY et al (2016) Structural phase transition and spin reorientation of LaFeO3 films under epitaxial strain. RSC Adv 6(102):100526

    Article  Google Scholar 

  9. Himcinschi C, Vrejoiu I, Weißbach T et al (2011) Raman spectra and dielectric function of BiCrO3: experimental and first-principles studies. J Appl Phys 110(7):073501

    Article  Google Scholar 

  10. Bibes M, Barthélémy A (2008) Towards a magnetoelectric memory. Nat Mater 7:425–426

    Article  Google Scholar 

  11. Hur N, Park S, Sharma PA et al (2004) Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature 429(6990):392–395

    Article  Google Scholar 

  12. Venugopalan S, Becker MM (1990) Raman scattering study of LuFeO3. J Chem Phys 93(6):3833–3836

    Article  Google Scholar 

  13. Ghosh A, Sahu JR, Bhat SV et al (2009) A Raman study of multiferroic LuMnO3. Solid State Sci 11(9):1639–1642

    Article  Google Scholar 

  14. Iliev MN, Lee HG, Popov VN et al (1997) Raman-and infrared-active phonons in hexagonal YMnO3: experiment and lattice-dynamical calculations. Phys Rev B 56(5):2488

    Article  Google Scholar 

  15. Lan C, Jiang Y, Yang S (2011) Magnetic properties of La and (La, Zr) doped BiFeO3 ceramics. J Mater Sci 46(3):734–738. doi:10.1007/s10853-010-4805-9

    Article  Google Scholar 

  16. Holinsworth BS, Mazumdar D, Brooks CM et al (2015) Direct band gaps in multiferroic h-LuFeO3. Appl Phys Lett 106(8):082902

    Article  Google Scholar 

  17. Mundy JA, Brooks CM, Holtz ME et al (2016) Atomically engineered ferroic layers yield a room-temperature magnetoelectric multiferroic. Nature 537(7621):523–527

    Article  Google Scholar 

  18. Wang W, Zhao J, Wang W et al (2013) Room-temperature multiferroic hexagonal LuFeO3 films. Phys Rev Lett 110(23):237601

    Article  Google Scholar 

  19. Sinha K, Zhang Y, Jiang X et al (2017) Effects of biaxial strain on the improper multiferroicity in h-LuFeO3 films studied using the restrained thermal expansion method. Phys Rev B 95(9):094110

    Article  Google Scholar 

  20. Akbashev AR, Semisalova AS, Perov NS et al (2011) Weak ferromagnetism in hexagonal orthoferrites RFeO3 (R = Lu, Er-Tb). Appl Phys Lett 99(12):122502

    Article  Google Scholar 

  21. Jeong YK, Lee JH, Ahn SJ et al (2012) Structurally tailored hexagonal ferroelectricity and multiferroism in epitaxial YbFeO3 thin-film heterostructures. J Am Chem Soc 134(3):1450–1453

    Article  Google Scholar 

  22. Iida H, Koizumi T, Uesu Y et al (2012) Ferroelectricity and ferrimagnetism of hexagonal YbFeO3 thin films. J Phys Soc Jpn 81(2):024719

    Article  Google Scholar 

  23. Kumar V, Nagashio K, Hibiya T et al (2008) Formation of hexagonal metastable phases from an undercooled LuFeO3 melt in an atmosphere with low oxygen partial pressure. J Am Ceram Soc 91(3):806–812

    Article  Google Scholar 

  24. Protasova SG, Straumal BB, Mazilkin AA et al (2014) Increase of Fe solubility in ZnO induced by the grain boundary adsorption. J Mater Sci 49:4490–4498. doi:10.1007/s10853-014-8146-y

    Article  Google Scholar 

  25. Straumal BB, Mazilkin AA, Protasova SG et al (2015) Grain boundaries as a source of ferromagnetism and increased solubility of Ni in nanograined ZnO. Rev Adv Mater Sci 41:61–71

    Google Scholar 

  26. Straumal BB, Protasova SG, Mazilkin AA et al (2016) Ferromagnetic behaviour of ZnO: the role of grain boundaries. Beilstein J Nanotechnol 7:1936

    Article  Google Scholar 

  27. Bourquard F, Maddi C, Donnet C et al (2016) Effect of nitrogen surrounding gas and plasma assistance on nitrogen incorporation in aC: N films by femtosecond pulsed laser deposition. Appl Surf Sci 374:104–111

    Article  Google Scholar 

  28. Fang X, Mak CL, Zhang S et al (2016) Pulsed laser deposited indium tin oxides as alternatives to noble metals in the near-infrared region. J Phys-Condens Matter 28(22):224009

    Article  Google Scholar 

  29. Fan XM, Lian JS, Guo ZX et al (2005) Microstructure and photoluminescence properties of ZnO thin films grown by PLD on Si (111) substrates. Appl Surf Sci 239(2):176–181

    Article  Google Scholar 

  30. Wang X, Pei Y, Lu M et al (2015) Highly efficient adsorption of heavy metals from wastewaters by graphene oxide-ordered mesoporous silica materials. J Mater Sci 50(5):2113–2121. doi:10.1007/s10853-014-8773-3

    Article  Google Scholar 

  31. Wang A, Belot JA, Marks TJ et al (1999) Buffers for high temperature superconductor coatings. Low temperature growth of CeO2 films by metal-organic chemical vapor deposition and their implementation as buffers. Physica C 320(3):154–160

    Article  Google Scholar 

  32. Ratanaphan S, Yoon Y, Rohrer GS (2014) The five parameter grain boundary character distribution of polycrystalline silicon. J Mater Sci 49(14):4938–4945. doi:10.1007/s10853-014-8195-2

    Article  Google Scholar 

  33. Disseler SM, Borchers JA, Brooks CM et al (2015) Magnetic structure and ordering of multiferroic hexagonal LuFeO3. Phys Rev Lett 114(21):217602

    Article  Google Scholar 

  34. Yokota H, Nozue T, Nakamura S et al (2015) Examination of ferroelectric and magnetic properties of hexagonal ErFeO3 thin films. Jpn J Appl Phys 54(10S):10NA10

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 61574121, 51572233, 11372266).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongjia Song or Jinbin Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Song, H., Tan, C. et al. Epitaxial growth and magnetic properties of h-LuFeO3 thin films. J Mater Sci 52, 13879–13885 (2017). https://doi.org/10.1007/s10853-017-1469-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1469-8

Keywords

Navigation