Skip to main content
Log in

Controllable preparation of large-area arrays of Al-substituted CoCuNi ferrite rods with improvement of saturation magnetization and initial permeability

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Co0.5Cu0.3Ni0.2Al x Fe2−x O4 (x = 0, 0.07, 0.14, and 0.21) rods of large-area arrays are synthesized by a solvothermal method, followed by calcination in air. The samples are characterized by powder X-ray diffraction, FT-IR spectra, scanning electron microscope, and vibrating sample magnetometer. The effect of diamagnetic Al3+ ion substitution and calcination temperature on the structure, morphology, and magnetic properties of Co0.5Cu0.3Ni0.2Al x Fe2−x O4 has been investigated. The results indicate that high-crystallized cubic Co0.5Cu0.3Ni0.2Al x Fe2−x O4 rods of large-area arrays are obtained when the precursors are calcined at 750 °C in air for 3 h. The crystallite size of Co0.5Cu0.3Ni0.2Al x Fe2−x O4 increases with the increase in Al3+ content, attributed to the decrease in lattice strain in Co0.5Cu0.3Ni0.2Al x Fe2−x O4 with the increase in Al3+ content. The lattice parameters of Co0.5Cu0.3Ni0.2Al x Fe2−x O4 slightly increase with the increase in Al3+ content. This is due to the transformation from cubic NiFe2O4 phase to cubic CoFe2O4 phase after doping Al3+ ion. Al3+ substitution can improve the magnetic properties of Co0.5Cu0.3Ni0.2Al x Fe2−x O4. Co0.5Cu0.3Ni0.2Al0.14Fe1.86O4, calcined at 950 °C, has the highest specific saturation magnetization (86.36 ± 2.25 emu/g) and magnetic moment (3.586 ± 0.093 μ B ). Co0.5Cu0.3Ni0.2Al0.21Fe1.79O4, calcined at 950 °C, has the highest initial permeability (17.216 ± 0.448). The results are explained by Neel’s two sublattices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Chen W, Wu WW, Liu SQ, Xu JW, Liu DS, Wu XH, Zhou Y, Wu J (2015) Lattice strains and magnetic properties evolution of Ni doped rod-like cobalt–manganese ferrite. Mater Sci Semicond Process 39:544–550

    Article  Google Scholar 

  2. Zhou Y, Wu XH, Wu WW, Huang XS, Chen W, Tian YL, He D (2016) Structure and magnetic properties evolution of cobalt–zinc ferrite with lithium substitution. Mater Sci Semicond Process 41:162–167

    Article  Google Scholar 

  3. Chen W, Zhou Y, Lu JY, Huang XS, Wu WW, Lin CW, Wang Q (2016) Effects of Li+ substitution on the structural and magnetic properties of Co0.5Mn0.5Fe2O4 particles. Ceram Int 42:1114–1121

    Article  Google Scholar 

  4. Zhou KW, Qin LQ, Wu XH, Wu WW, Shen YX, Tian YL, Lu JY (2015) Structure and magnetic properties of manganese–nickel ferrite with lithium substitution. Ceram Int 41:1235–1241

    Article  Google Scholar 

  5. Kumar Y, Shirage PM (2017) Highest coercivity and considerable saturation magnetization of CoFe2O4 nanoparticles with tunable band gap prepared by thermal decomposition approach. J Mater Sci 52:4840–4851. doi:10.1007/s10853-016-0719-5

    Article  Google Scholar 

  6. Zaki HM, Al-Heniti SH, Hashhash A (2016) Effect of Al3+ ion addition on the magnetic properties of cobalt ferrite at moderate and low temperatures. J Magn Magn Mater 401:1027–1032

    Article  Google Scholar 

  7. Joshi S, Kamble VB, Kumar M, Umarji AM, Srivastava G (2016) Nickel substitution induced effects on gas sensing properties of cobalt ferrite nanoparticles. J Alloys Compd 654:460–466

    Article  Google Scholar 

  8. Gao JM, Yan ZK, Liu J, Zhang M, Guo M (2015) Synthesis, structure and magnetic properties of Zn substituted Ni–Co–Mn–Mg ferrites. Mater Lett 141:122–124

    Article  Google Scholar 

  9. Jadhav P, Patankar K, Mathe V, Tarwal NL, Jang JH, Puri V (2015) Structural and magnetic properties of Ni0.8Co0.2−2x Cu x Mn x Fe2O4 spinel ferrites prepared via solution combustion route. J Magn Magn Mater 385:160–165

    Article  Google Scholar 

  10. Kane SN, Satalkar M (2017) Correlation between magnetic properties and cationic distribution of Zn0.85−x Ni x Mg0.05Cu0.1Fe2O4 nano spinel ferrite: effect of Ni doping. J Mater Sci 52:3467–3477. doi:10.1007/s10853-016-0636-7

    Article  Google Scholar 

  11. Wu XH, Wu WW, Li YN, Li F, Liao S (2015) Synthesis and electrochemical performance of rod-like CuFe2O4 as an anode material for Na-ion battery. Mater Lett 138:192–195

    Article  Google Scholar 

  12. Nie LY, Wang HJ, Ma JJ, Liu S, Yuan R (2017) Sulfur-doped ZnFe2O4 nanoparticles with enhanced lithium storage capabilities. J Mater Sci 52:3566–3575. doi:10.1007/s10853-016-0373-y

    Article  Google Scholar 

  13. Zhou Y, Chen W, Shen YX, Wu XH, Wu WW, Wu J (2015) Lattice strains and magnetic properties evolution of copper–magnesium ferrite with lithium substitution. J Magn Magn Mater 396:198–203

    Article  Google Scholar 

  14. Saffari F, Kameli P, Rahimi M, Ahmadvand H, Salamati H (2015) Effects of Co-substitution on the structural and magnetic properties of NiCo x Fe2−x O4 ferrite nanoparticles. Ceram Int 41:7352–7358

    Article  Google Scholar 

  15. Raju K, Venkataiah G, Yoon DH (2014) Effect of Zn substitution on the structural and magnetic properties of Ni–Co ferrites. Ceram Int 40:9337–9344

    Article  Google Scholar 

  16. Li LZ, Yu Z, Lan ZW, Sun K, Wu CJ (2014) Structural and magnetic properties of Mg-substituted NiZnCo ferrite nanopowders. Ceram Int 40:13917–13921

    Article  Google Scholar 

  17. Chen W, Wu WW, Wu XH, Li TW, Wu J, Zhang HX (2017) Controlled growth of large-area arrays of Al-substituted CoNiZn ferrite rods with high saturation magnetization by solvothermal method. J Mater Sci: Mater Electron. doi:10.1007/s10854-017-6486-5

    Google Scholar 

  18. Chen W, Liu DS, Wu WW, Zhang HX, Wu J (2017) Structure and magnetic properties evolution of rod-like Co0.5Ni0.25Zn0.25Dy x Fe2−x O4 synthesized by solvothermal method. J Magn Magn Mater 422:49–56

    Article  Google Scholar 

  19. Sodaee T, Ghasemi A, Razavi RS (2016) Controlled growth of large-area arrays of gadolinium-substituted cobalt ferrite nanorods by hydrothermal processing without use of any template. Ceram Int 42:17420–17428

    Article  Google Scholar 

  20. Ravichandran M, Oza G, Velumani S, Ramirez JT, Garcia-Sierra F, Andrade NB, Garza-Navarro MA, Garcia-Gutierrez DI, Asomoza R (2014) One-dimensional ordered growth of magneto-crystalline and biocompatible cobalt ferrite nano-needles. Mater Lett 135:67–70

    Article  Google Scholar 

  21. Ahmad I, Abbas T, Islam MU, Maqsood A (2013) Study of cation distribution for Cu–Co nanoferrites synthesized by the sol–gel method. Ceram Int 39:6735–6741

    Article  Google Scholar 

  22. Balavijayalakshmi J, Suriyanarayanan N, Jayaprakash R (2014) Effects of sintering on structural and magnetic properties of Cu substituted cobalt–nickel mixed ferrite nano particles. J Magn Magn Mater 362:135–140

    Article  Google Scholar 

  23. Jadhav PS, Patankar KK, Puri V (2016) Structural, electrical and magnetic properties of Ni–Co–Cu–Mn ferrite thick films. Mater Res Bull 75:162–166

    Article  Google Scholar 

  24. Raghavender AT, Hong NH, Kurisu M (2016) Enhanced magnetization by doping aluminum in laser ablated copper ferrite thin films. J Magn Magn Mater 401:914–917

    Article  Google Scholar 

  25. Zaki HM, Al-Heniti S, Al Shehri N (2014) New scheme for cation distribution and electrical characterization of nanocrystalline aluminum doped magnesium ferrite MgAl x Fe2−x O4. Phys B 436:157–163

    Article  Google Scholar 

  26. Verma S, Chand J, Singh M (2014) Structural and electrical properties of Al3+ ions doped nanocrystalline Mg0.2Mn0.5Ni0.3Al y Fe2−y O4 ferrites synthesized by citrate precursor method. J Alloys Compd 587:763–770

    Article  Google Scholar 

  27. Huang XS, Zhou Y, Wu WW, Xu JW, Liu SQ, Liu DS, Wu J (2016) Effect of Zn2+ substitution on the structure and magnetic properties of Co0.5Cu0.5Fe2O4 synthesized by solvothermal method. J Electron Mater 45:3113–3120

    Article  Google Scholar 

  28. Harzali H, Saida F, Marzouki A, Megriche A, Baillon F, Espitalier F, Mgaidi A (2016) Structural and magnetic properties of nano-sized NiCuZn ferrites synthesized by co-precipitation method with ultrasound irradiation. J Magn Magn Mater 419:50–56

    Article  Google Scholar 

  29. Wang L, Rai BK, Mishra SR (2015) Structural and magnetic study of Al3+ doped Ni0.75Zn0.25Fe2−x Al x O4 nanoferrites. Mater Res Bull 65:183–194

    Article  Google Scholar 

  30. Chen W, Wu WW, Liu DS, Wu J (2017) Improvement of the coercivity of rod-like NiCuMg ferrites induced by substitution of Dy3+ ions for Fe3+ ions. J Mater Sci: Mater Electron 28:2901–2909

    Google Scholar 

  31. Amer MA (2017) Structural and magnetic studies of the Co1+x Ti x Fe2(1−x)O4 ferrites. J Magn Magn Mater 426:771–778

    Article  Google Scholar 

  32. Wahba AM, Aboulfotoh Ali N, Eltabey MM (2014) Effect of Al-ion substitution on structural and magnetic properties of Co–Ni ferrites nanoparticles prepared via citrate precursor method. Mater Chem Phys 146:224–229

    Article  Google Scholar 

  33. Wu XH, Wu WW, Qin LQ, Wang KT, Ou SQ, Zhou KW, Fan YJ (2015) Structure and magnetic properties evolution of nickel–zinc ferrite with lanthanum substitution. J Magn Magn Mater 379:232–238

    Article  Google Scholar 

  34. Lodhi MY, Mahmood K, Mahmood A, Malik H, Warsi MF, Shakir I, Asghar M, Khan MA (2014) New Mg0.5Co x Zn0.5−x Fe2O4 nano-ferrites: Structural elucidation and electromagnetic behavior evaluation. Curr Appl Phys 14:716–720

    Article  Google Scholar 

  35. Zaki HM, Al-Heniti SH, Elmosalami TA (2015) Structural, magnetic and dielectric studies of copper substituted nano-crystalline spinel magnesium zinc ferrite. J Alloys Compd 633:04–114

    Article  Google Scholar 

  36. Mohammed KA, Al-Rawas AD, Gismelseed AM, Sellai A, Widatallah HM, Yousif A, Elzain ME, Shongwe M (2012) Infrared and structural studies of Mg1−x Zn x Fe2O4 ferrites. Phys B 407:795–804

    Article  Google Scholar 

  37. Sharma R, Thakur P, Kumar M, Thakur N, Negi NS, Sharma P, Vineet Sharma V (2016) Improvement in magnetic behaviour of cobalt doped magnesium zinc nano-ferrites via co-precipitation route. J Alloys Compd 684:569–581

    Article  Google Scholar 

  38. Wu WW, Cai JC, Wu XH, Li YN, Liao S (2011) Magnetic properties and crystallization kinetics of Zn0.5Ni0.5Fe2O4. Rare Met 30:621–626

    Article  Google Scholar 

  39. Wu XH, Guo JH, McDonald MJ, Li SG, Xu BB, Yang Y (2015) Synthesis and characterization of urchin-like Mn0.33Co0.67C2O4 for Li-ion batteries: role of SEI layers for enhanced electrochemical properties. Electrochim Acta 163:93–101

    Article  Google Scholar 

  40. Gao Y, Zhao Y, Jiao QZ, Li HS (2013) Microemulsion-based synthesis of porous Co–Ni ferrite nanorods and their magnetic properties. J Alloys Compd 555:95–100

    Article  Google Scholar 

  41. Mohameda MB, Wahba AM (2014) Structural, magnetic, and elastic properties of nanocrystalline Al-substituted Mn0.5Zn0.5Fe2O4 ferrite. Ceram Int 40:11773–11780

    Article  Google Scholar 

  42. Zhou KW, Chen W, Wu XH, Wu WW, Lin CW, Wu J (2017) Improvement of the coercivity of cobalt ferrites induced by substitution of Sr2+ ions for Co2+ ions. J Electron Mater. doi:10.1007/s11664-017-5466-0

    Google Scholar 

  43. Wu XH, Chen W, Wu WW, Li HJ, Lin CW (2017) Structural and magnetic properties evolution of Li-substituted Co0.5Ni0.5Fe2O4 ferrite. J Electron Mater 46:199–207

    Article  Google Scholar 

  44. Akhtar MN, Rahman A, Sulong AB, Khan MA (2017) Structural, spectral, dielectric and magnetic properties of Ni0.5Mg x Zn0.5−x Fe2O4 nanosized ferrites for microwave absorption and high frequency applications. Ceram Int 43:4357–4365

    Article  Google Scholar 

  45. Verma S, Chand J, Batoo KM, Singh M (2013) Structural, magnetic and Mössbauer spectral studies of aluminum substituted Mg–Mn–Ni ferrites (Mg0.2Mn0.5Ni0.3AlyFe2−yO4). J Alloys Compd 551:715–721

    Article  Google Scholar 

  46. Ateia E, Ahmed MA, Ghouniem RM (2014) Electrical properties and initial permeability of Cu–Mg ferrites. Solid State Sci 31:99–106

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Grant Nos. 21603040, 21561003) and the Guangxi Natural Science Foundation of China (Grant Nos. 2016GXNSFDA380034, 2016GXNSFBA380062).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenwei Wu or Huaxin Zhang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Chen, W., Wu, W. et al. Controllable preparation of large-area arrays of Al-substituted CoCuNi ferrite rods with improvement of saturation magnetization and initial permeability. J Mater Sci 52, 10085–10097 (2017). https://doi.org/10.1007/s10853-017-1211-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1211-6

Keywords

Navigation