Skip to main content
Log in

Carbon nanotube reinforced aluminum matrix composites produced by spark plasma sintering

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Spark plasma sintering (SPS) has been recognized, in the recent past, as a very useful method to produce metal matrix composites with enhanced mechanical and wear properties. Obviously, the materials final properties are strongly related to the reinforcement types and percentages as well as to the processing parameters employed during synthesis. The present paper analyses the effect of 0.5 and 1% of carbon nanotubes (CNTs) addition on the mechanical and microstructural behavior of Al-based metal matrix composites produced via SPS. The results show that the carbon nanotubes addition results in an increase in porosity and an increase in strength with respect to pure SPSed aluminum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. Koli DK, Agnihotri G, Purohit R (2014) A review on properties, behaviour and processing methods for Al–nano Al2O3 composites. Procedia Mater Sci 6:567–589

    Article  Google Scholar 

  2. Khorshid MT, Jahromi SJ, Moshksar M (2010) Mechanical properties of tri-modal Al matrix composites reinforced by nano- and submicron-sized Al2O3 particulates developed by wet attrition milling and hot extrusion. Mater Des 31:3880–3884

    Article  Google Scholar 

  3. Hesabi ZR, Simchi A, Reihani SMS (2006) Structural evolution during mechanical milling of nanometric and micrometric Al2O3 reinforced aluminum matrix composites. Mater Sci Eng A428:159–168

    Article  Google Scholar 

  4. Casati R, Bonollo F, Dellasega D, Fabrizi A, Timelli G, Tuissi A, Vedani M (2014) Ex situ Al–Al 2 O 3 ultrafine grained nanocomposites produced via powder metallurgy. J Alloy Compd 615:S386–S388

    Article  Google Scholar 

  5. Tjong SC (2007) Novel nanoparticle-reinforced metal matrix composites with enhanced mechanical properties. Adv Eng Mater 9:639–652

    Article  Google Scholar 

  6. Kang YC, Chan SLI (2004) Tensile properties of nanometric Al2O3 particulate-reinforced aluminum matrix composites. Mater Chem Phys 85:438–443

    Article  Google Scholar 

  7. Sweet G, Brochu M, Hexemer R, Donaldson I, Bishop D (2015) Consolidationof aluminum-based metal matrix composites via spark plasma sintering. Mater Sci Eng A648:123–133

    Article  Google Scholar 

  8. Al-Aqeeli N, Mendoza-Suarez G, Suryanarayana C, Drew R (2008) Development of new Al-based nanocomposites by mechanical alloying. Mater Sci Eng A 480:392–396

    Article  Google Scholar 

  9. Suryanarayana C (2011) Synthesis of nanocomposites by mechanical alloying. J Alloy Compd 509:S229–S234

    Article  Google Scholar 

  10. Tjong SC, Ma ZY (2000) Microstructural and mechanical characteristics of in situ metal matrix composites. Mater Sci Eng R29:49–113

    Article  Google Scholar 

  11. Peng Y, Zhi M, Tjong SC (2005) Structure, thermal and mechanical properties of in situ Al-based metal matrix composite reinforced with Al2O3 and Tic submicron particles. Mater Chem Phys 93:109–116

    Article  Google Scholar 

  12. German R (1994) Powder metallurgy, 2nd edn. Wiley, New York, pp 367–371

    Google Scholar 

  13. Vaucher S, Beffort O (2001) Bonding and interface formation in metal matrix composites, volume 9, MMC-Assess Thematic Network

  14. Dash K, Chaira D, Ray BC (2013) Synthesis and characterization of aluminium–alumina micro-and nano-composites by spark plasma sintering. Mater Res Bull 48:2535–2542

    Article  Google Scholar 

  15. Ghasali E, Alizadeh M, Ebadzadeh T (2016) Mechanical and microstructure comparison between microwave and spark plasma sintering of Al–B 4 C composite. J Alloy Compd 655:93–98

    Article  Google Scholar 

  16. Ghasali E, Pakseresht A, Rahbari A, Eslami-shahed H, Alizadeh M, Ebadzadeh T (2016) Mechanical properties and microstructure characterization of spark plasma and conventional sintering of Al–SiC–TiC composites. J Alloy Compd 666:366–371

    Article  Google Scholar 

  17. Wolff C, Mercier S, Couque H, Molinari A (2012) Modeling of conventional hot compaction and spark plasma sintering based on modified micromechanical models of porous materials. Mech Mater 49:72–91

    Article  Google Scholar 

  18. Liu Z-F, Zhang Z-H, Lu J-F, Korznikov AV, Korznikova E, Wang F-C (2014) Effect of sintering temperature on microstructures and mechanical properties of spark plasma sintered nanocrystalline aluminum. Mater Des 64:625–630

    Article  Google Scholar 

  19. Munir ZA, Quach VD (2011) Electric current activation of sintering: a review of the pulsed electric current sintering process. J Am Ceram Soc 94:1–19

    Article  Google Scholar 

  20. Firesteina KL, Corthay S, Steinman AE, Matveev AT, Kovalskii AM, Sukhorukova IV, Golberg D, Shtansky DV (2017) High-strength aluminum-based composites reinforced with BN, AlB2 and AlN particles fabricated via reactive spark plasma sintering of Al–BN powder mixtures. Mater Sci Eng A681:1–9

    Article  Google Scholar 

  21. Babu K, Kallip K, Leparoux M, AlOgab KA, Maeder X, Rojas Dasilva YA (2016) Influence of microstructure and strengthening mechanism of AlMg5–Al2O3 nanocomposites prepared via spark plasma sintering. Mater Des 95:534–544

    Article  Google Scholar 

  22. Tan Z, Wang L, Xue Y, Zhang P, Cao T, Cheng X (2016) High-entropy alloy particle reinforced Al-based amorphous alloy composite with ultrahigh strength prepared by spark plasma sintering. Mater Des 109:219–226

    Article  Google Scholar 

  23. Mula S, Mondal K, Ghosh S, Pabi SK (2010) Structure and mechanical properties of Al–Ni–Ti amorphous powder consolidated by pressure-less, pressure-assisted and spark plasma sintering. Mater Sci Eng A527:3757–3763

    Article  Google Scholar 

  24. Zhanga J, Shi H, Cai M, Liu L, Zha P (2009) The dynamic properties of SiCp/Al composites fabricated by spark plasma sintering with powders prepared by mechanical alloying process. Mater Sci Eng A527:218–224

    Article  Google Scholar 

  25. Sweet GA, Brochu M, Hexemer RL (2015) Consolidation of aluminum-based metal matrix composites via spark plasma sintering. Mater Sci Eng A648:123–133

    Article  Google Scholar 

  26. Daoush W, Francis A, Lin Y, German R (2015) An exploratory investigation on the in situ synthesis of SiC/AlN/Al composites by spark plasma sintering. J Alloy Compd 622:458–462

    Article  Google Scholar 

  27. Sadeghian Z, Lotfi B, Enayati MH, Beiss P (2011) Microstructural and mechanical evaluation of Al–TiB2 nanostructured composite fabricated by mechanical alloying. J Alloy Compd 509:7758–7763

    Article  Google Scholar 

  28. Mizuuchi K, Inoue K, Agari Y, Nagaoka T, Sugioka M, Tanaka M, Takeuchi T, Tani J, Kawahara M, Makino Y, Ito M (2012) Processing and thermal properties of Al/AlN composites in continuous solid–liquid co-existent state by spark plasma sintering. Compos Part B 43:1557–1563

    Article  Google Scholar 

  29. Durowoju MO, Sadiku ER, Diouf S, Shongwe MB, Olubambi PA (2015) Spark plasma sintering of graphite–aluminum powder reinforced with SiC/Si particles. Powder Technol 284:504–513

    Article  Google Scholar 

  30. Diouf S, Molinari A (2012) Densification mechanisms in spark plasma sintering: effect of particle size and pressure. Powder Technol 221:220–227

    Article  Google Scholar 

  31. Devaraj S, Sankaran S, Kumar R (2013) Influence of spark plasma sintering temperature on the densification, microstructure and mechanical properties of Al-4.5 wt% Cu alloy. Acta Metall Sin 26:761–771

    Article  Google Scholar 

  32. Decker S, Martin S, Krüger L (2016) Influence of powder particle size on the compaction behavior and mechanical properties of a high-alloy austenitic CrMnNi TRIP steel during spark plasma sintering. Metall Mater Trans A47:170–177

    Article  Google Scholar 

  33. Olevsky EA, Froyen L (2009) Impact of thermal diffusion on densification during SPS. J Am Ceram Soc 92:s1

    Article  Google Scholar 

  34. Saheb N, Khan MS, Hakeem AS (2015) Effect of processing on mechanically alloyed and spark plasma sintered Al–Al2O3 nanocomposites. J Nanomater 16:609824

    Google Scholar 

  35. Grácio JJ, Picu CR, Vincze G, Mathew N, Schubert T, Lopes A, Buchheim C (2013) Mechanical behavior of Al–SiC nanocomposites produced by ball milling and spark plasma sintering. Metall Mater Trans A44:5259–5269

    Article  Google Scholar 

  36. Garay J (2010) Current-activated, pressure-assisted densification of materials. Annu Rev Mater Res 40:445–468

    Article  Google Scholar 

  37. Casati R (2015) Aluminum matrix composites reinforced with alumina nanoparticles. Springer, Berlin. doi:10.1007/978-3-319-27732-5_5

    Google Scholar 

  38. He F, Han Q, Jackson MJ (2008) Nanoparticulate reinforced metal matrix nanocomposites—a review. Int J Nanoparticles 1:301–309

    Article  Google Scholar 

  39. Asgharzadeh H, Simchi A, Kim HS (2011) Microstructural features, texture and strengthening mechanisms of nanostructured AA6063 alloy processed by powder metallurgy. Mater Sci Eng A528:3981–3989

    Article  Google Scholar 

  40. Deng K, Shi J, Wang C, Wang X, Wu Y, Nie K, Wu K (2012) Microstructure and strengthening mechanism of bimodal size particle reinforced magnesium matrix composite. Compos Part A 43:1280–1284

    Article  Google Scholar 

  41. Pelleg J (2012) Mechanical properties of materials. Springer, Berlin, pp 197–198

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Cavaliere.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cavaliere, P., Sadeghi, B. & Shabani, A. Carbon nanotube reinforced aluminum matrix composites produced by spark plasma sintering. J Mater Sci 52, 8618–8629 (2017). https://doi.org/10.1007/s10853-017-1086-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1086-6

Keywords

Navigation