Skip to main content
Log in

d-Glucose mitigates the agglomeration of the hollow graphitic carbon nanospheres

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Hollow graphitized porous carbon nanosphere (CNS) materials were synthesized from the polymerization of resorcinol (R) and formaldehyde (F) in the presence of a well-characterized iron polymeric complex. However, CNS formed large aggregates, which limit the full utilization of the nanostructures of CNS in applications. In order to mitigate the agglomeration of primary CNS, we conducted step-by-step investigation of the CNS synthetic process to identify the origin of the aggregate formation and explored methods to minimize the agglomeration of the formed CNS. It was found that when d-glucose, a crystalline compound, was added in the resorcinol–formaldehyde polymerization process, CNS aggregation was alleviated. The resulted CNS was studied for its surface and structure properties by transmission electron microscope, Brunauer–Emmett–Teller surface area bulk conductivity measurement, and Raman spectroscopy. The role of d-glucose in reducing aggregation of CNS seems to be related to its influence on the polymerization process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Mauter MS, Elimelech M (2008) Environmental applications of carbon-based nanomaterials. Environ Sci Technol 42(16):5843–5859. doi:10.1021/es8006904

    Article  Google Scholar 

  2. Zhang BT, Zheng X, Li HF, Lin JM (2013) Application of carbon-based nanomaterials in sample preparation: a review. Anal Chimi Acta 784(19):1–17. doi:10.1016/j.aca.2013.03.054

    Article  Google Scholar 

  3. Scida K, Stege PW, Haby G, Messina GA, García CD (2011) Recent applications of carbon-based nanomaterials in analytical chemistry: critical review. Anal Chim Acta 691(1–2):6–17. doi:10.1016/j.aca.2011.02.025

    Article  Google Scholar 

  4. Levi-Polyachenko NH, Carroll DL, Stewart JH (2008) Applications of carbon-based nanomaterials for drug delivery in oncology, In: Cataldo F, Da Ros T (eds) Medicinal chemistry and pharmacological potential of fullerenes and carbon nanotubes, carbon materials: chemistry and physics, vol 1. Springer, pp 223–266

  5. Wen J, Xu Y, Li H, Lu A, Sun S (2015) Recent applications of carbon nanomaterials in fluorescence biosensing and bioimaging. Chem Commun 51:11346–11358. doi:10.1039/C5CC02887F

    Article  Google Scholar 

  6. Qian WY, Sulong B, Tan SH (2015) Application of functionalized carbon-based nanomaterials in membrane separation: carbon nanotubes and graphene. In: Thakur MK, Thakur MK (eds) Chemical functionalization of carbon nanomaterials chemistry and applications. CRC Press, Boca Raton, pp 718–747

    Google Scholar 

  7. Gogotsi YG, Presser V (2013) Carbon nanomaterials, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  8. Gogotsi YG (2006) Carbon nanomaterials. CRC Press, Boca Raton, p 237

    Book  Google Scholar 

  9. Dai L, Chang DW, Baek JB, Lu W (2012) Carbon nanomaterials for advanced energy conversion and storage, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, wileyonlinelibrary.com. doi: 10.1002/smll.201101594

  10. Chen T, Dai L (2013) Carbon nanomaterials for high-performance supercapacitors. Mater Today 16(7–8):272–280. doi:10.1016/j.mattod.2013.07.002

    Article  Google Scholar 

  11. Weinstein L, Dash R (2013) Supercapacitor carbons. Mater Today 16(10):356–357. doi:10.1016/j.mattod.2013.09.005

    Article  Google Scholar 

  12. Heiligtag FJ, Niederberger M (2013) The fascinating world of nanoparticle research. Mater Today 16(7–8):262–271. doi:10.1016/j.mattod.2013.07.004

    Article  Google Scholar 

  13. Pham CH (2015) Carbon nanotubes offer big technological advantages. Nanotechnology: emerging technology views. http://www.gtlaw-emergingtechnologyviews.com/2015/05/carbon-nanotubes-offer-big-technological-advantages/

  14. Boskovic B (2015) Carbon nanomaterials for transport, Cambridge Nanomaterials Technology Ltd, http://www.nanomagazine.co.uk/index.php?option=com_content&view=article&id=532%3Acarbon-nanomaterials-for-transport&Itemid=149

  15. Susi T, Pichler T, Ayala P (2015) X-ray photoelectron spectroscopy of graphitic carbon nanomaterials doped with heteroatoms. Beilstein J Nanotechnol 6: 177–192. In: Bittencourt C (ed) Atomic scale interface design and characterisation: experimental aspects and method

  16. Liu C, Wang J, Li JS, Zeng ML, Luo R, Shen JY, Sun XY, Han WQ, Wang LJ (2016) Synthesis of N-doped hollow-structured mesoporous carbon nanospheres for high-performance supercapacitors. ACS Appl Mater Interfaces 8:7194–7204. doi:10.1021/acsami.6b02404

    Article  Google Scholar 

  17. Zhang C, Bhargava G, Elwell MD, Parasher S, Zhou B, Yates D, Knoke I, Neitzel I, Gogotsi Y (2014) Hollow graphitic carbon nanospheres: synthesis and properties. J Mater Sci 49:1947–1956

    Article  Google Scholar 

  18. Atif R, Inam F (2016) Reasons and remedies for the agglomeration of multilayered graphene and carbon nanotubes in polymers. Beilstein J Nanotechnol 7: 1174–1196. In: Sidorenko AS (ed) Physics, chemistry and biology of functional nanostructures III. doi:10.3762/bjnano.7.109

  19. Shi DL, Feng XQ, Huang YY, Hwang KC, Gao HJ (2004) The effect of nanotube waviness and agglomeration on the elastic property of carbon nanotube- reinforced composites. J Eng Technol 126:250–257. doi:10.1115/1.1751182

    Google Scholar 

  20. Reinert L, Zeigerab M, Suáreza S, Presserab V, Mücklicha F (2015) Dispersion analysis of carbon nanotubes, carbon onions, and nanodiamonds for their application as reinforcement phase in nickel metal matrix composites. RSC Adv 5:95149–95159. doi:10.1039/C5RA14310A

    Article  Google Scholar 

  21. Vaisman L, Wagner HD, Marom G (2006) The role of surfactants in dispersion of carbon nanotubes. Adv Colloid Interface Sci 128–130:37–46. doi:10.1016/j.cis.2006.11.007

    Article  Google Scholar 

  22. Quigley JP, Herrington K, Bortner M et al (2014) Benign reduction of carbon nanotube agglomerates using a supercritical carbon dioxide process. Appl Phys A 117:1003–1017. doi:10.1007/s00339-014-8791-7

    Article  Google Scholar 

  23. Sobkowicza MJ, Dorgana JR, Gneshinb KW, Herringa AM, McKinnona JT (2009) Controlled dispersion of carbon nanospheres through surface functionalization. Carbon 47(3):622–628. doi:10.1016/j.carbon.2008.10.051

    Article  Google Scholar 

  24. Van Nguyen H, Tun NM, Rakov EG (2015) Dispersion of carbon nanomaterials in an aqueous medium using a triton X-100 surfactant. Russ J Inorg Chem 60:536–540. doi:10.1134/S0036023615040166

    Article  Google Scholar 

  25. Parveen S, Rana S, Fangueiro R (2013) A review on nanomaterial dispersion, microstructure, and mechanical properties of carbon nanotube and nanofiber reinforced cementitious composites. J Nanomater Article ID 710175:19. http://dx.doi.org/10.1155/2013/710175

  26. Leea YJ, Huang L, Wang H, Sushko ML, Schwenzera B, Aksayc IA, Liu J (2015) Structural rearrangement and dispersion of functionalized graphene sheets in aqueous solutions. Colloid Interface Sci Commun 8:1–5. doi:10.1016/j.colcom.2015.12.002

    Article  Google Scholar 

  27. Wang H, Zhou W, Ho DL, Winey KI, Fischer JE, Glinka CJ, Hobbie EK (2004) Dispersing single-walled carbon nanotubes with surfactants: a small angle neutron scattering study. Nano Lett 4 (9): 1789–1793. http://ws680.nist.gov/publication/get_pdf.cfm?pub_id=852379

  28. Ryu J, Suh YW, Suh DJ, Ahn DJ (2010) Hydrothermal preparation of carbon microspheres from mono-saccharides and phenolic compounds. Carbon 48:1990–1998

    Article  Google Scholar 

  29. Yao C, Shin Y, Wang LQ, Windisch CF Jr, Samuels WD, Arey BW, Wang CM, Risen WM Jr, Exarhos GJ (2007) Hydrothermal dehydration of aqueous fructose solutions in a closed system. J Phys Chem C 111(42):15141–15145. doi:10.1021/jp074188l

    Article  Google Scholar 

  30. Sing KSW (1982) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 54 (11): 2201–2218. https://www.iupac.org/publications/pac-2007/1982/pdf/5411x2201.pdf

  31. Fujii S, Tsuchida H, Kömoto M (1966) Chemical studies on the reaction products of glucose and ammonia, Part X. Isolation and identification of 4 (5)- (DL-Glycero-2,3-Dihydroxypropyl) imidazole. Agr Biol Chem 30(1):73–77

    Google Scholar 

  32. Osswald S, Behler K, Gogotsi Y (2008) Laser-induced light emission from carbon nanoparticles. J Appl Phys 104:074308. doi:10.1063/1.2980321

    Article  Google Scholar 

  33. Lázaro MJ, Calvillo L, Celorrio V, Pardo JI, Perathoner S, Moliner R (2011) Study and application of carbon black Vulcan XC-72R in polymeric electric fuel cells. In: Sanders JI, Peeten TL (eds) Carbon black: production, properties and uses, Nova Science Publishers, Inc. https://www.researchgate.net/profile/Veronica_Celorrio/publication/259442510_Study_and_application_of_Vulcan_XC-72_in_low_temperature_fuel_cells/links/0046353709edbb2b19000000.pdf

  34. Bordere S, Corpart JM, El Bounia N, Gaillard P, Passade-Boupat N, Piccione PM, Plée D. Industrial production and applications of carbon nanotubes. http://www.graphistrength.com/export/sites/graphistrength/.content/medias/downloads/literature/General-information-on-carbon-nanotubes.pdf

  35. Tan PH, Dimovski S, Gogotsi Y (2004) Raman scattering of non-planar graphite: arched edges, polyhedral crystals, whiskers and cones. Philos Trans A Math Phys Eng Sci 362:2289

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Sumitomo Chemical Company for the financial support. We thank Mr. Henry Song and Dr. Xiaolan Tang for BET surface area measurements. We thank Dr. Martin Fransson and Dr. Gaurang Bhargava who assisted the TEM, Raman spectroscopy, and bulk conductivity measurements. We thank Dr. Yuri Gotsco who provided guidance and discussion on work related to Raman spectroscopy and bulk conductivity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Zhang.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Gao, Q., Parasher, S. et al. d-Glucose mitigates the agglomeration of the hollow graphitic carbon nanospheres. J Mater Sci 52, 5968–5980 (2017). https://doi.org/10.1007/s10853-017-0833-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-0833-z

Keywords

Navigation