Skip to main content
Log in

Benign reduction of carbon nanotube agglomerates using a supercritical carbon dioxide process

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A method was developed to deagglomerate commercially available multi-walled carbon nanotube (MWCNT) bundles while maintaining the carbon nanotube aspect ratio. The process utilizes the rapid expansion of a supercritical carbon dioxide/MWCNT mixture to separate large primary carbon nanotube agglomerates. High levels of deagglomeration of Baytubes® C 150 P and Nanocyl™ NC-7000 MWCNT bundles were observed on the macroscale and nanoscale, resulting in 30-fold and 50-fold decreases in bulk density, respectively, with median agglomerate sizes <8 μm in diameter. These results were obtained while retaining the aspect ratio of the as-received nanomaterial, irrespective of the MWCNT agglomerate morphology. It was found that a temperature and pressure of 40 °C and 7.86 MP resulted in maximum deagglomeration without damage to the MWCNTs. Thermodynamic principles were applied to describe the effect of processing variables on the efficiency of the deagglomeration. These results suggest that combining this process with a composite processing step, such as melt compounding, will result in nanocomposites with enhanced electrical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Iijima, Nature 354, 6348 (1991)

    Article  Google Scholar 

  2. T.W. Ebbesen, H.J. Lezec, H. Hiura, J.W. Bennett, H.F. Ghaemi, T. Thio, Nature 382, 6586 (1996)

    Article  Google Scholar 

  3. J.P. Salvetat, A.J. Kulik, J.M. Bonard, G.A.D. Briggs, T. Stockli, K. Metenier, S. Bonnamy, F. Beguin, N.A. Burnham, L. Forro, Adv. Mater. 11, 2 (1999)

    Article  Google Scholar 

  4. J.P. Salvetat, G.A.D. Briggs, J.M. Bonard, R.R. Bacsa, A.J. Kulik, T. Stockli, N.A. Burnham, L. Forro, Phys. Rev. Lett. 82, 5 (1999)

    Article  Google Scholar 

  5. Q.W. Li, C.H. Liu, X.S. Wang, S.S. Fan, Nanotechnology 20, 14 (2009)

    Google Scholar 

  6. I. Alig, P. Potschke, D. Lellinger, T. Skipa, S. Pegel, G.R. Kasaliwal, T. Villmow, Polymer 53, 1 (2012)

    Article  Google Scholar 

  7. D. Stoyan, W.S. Kendall, J. Mecke, Stochastic Geometry and Its Applications, 2nd edn. (Wiley, New York, 1995)

    MATH  Google Scholar 

  8. A.V. Kyrylyuk, P. van der Schoot, Proc. Natl. Acad. Sci. USA 105, 32 (2008)

    Article  Google Scholar 

  9. B.P. Grady, Thermal Conductivity, in Carbon Nanotube–Polymer Composites, ed. by A. Sastry (Wiley, New York, 2011), pp. 283–304

  10. J.C.H. Affdl, J.L. Kardos, Polym. Eng. Sci. 16, 5 (1976)

    Article  Google Scholar 

  11. C.J. Kerr, Y.Y. Huang, J.E. Marshall, E.M. Terentjev, J. Appl. Phys. 109, 9 (2011)

    Article  Google Scholar 

  12. S. Badaire, P. Poulin, M. Maugey, C. Zakri, Langmuir 20, 24 (2004)

    Article  Google Scholar 

  13. K. Menzer, B. Krause, R. Boldt, B. Kretzschmar, R. Weidisch, P. Potschke, Compos. Sci. Technol. 71, 16 (2011)

    Article  Google Scholar 

  14. K. Menzer, B. Krause, R. Boldt, B. Kretzschmar, R. Weidisch, P. Potschke, Compos. Sci. Technol. 71, 16 (2011)

    Article  Google Scholar 

  15. R. Socher, B. Krause, M.T. Muller, R. Boldt, P. Potschke, Polymer 53, 2 (2012)

    Article  Google Scholar 

  16. J. Guo, Y. Liu, R. Prada-Silvy, Y. Tan, S. Azad, B. Krause, P. Pötschke, B.P. Grady, J. Polym. Sci. Part B Polym. Phys. 52, 73–83 (2013)

  17. B. Krause, R. Bolcit, P. Potschke, Carbon 49, 4 (2011)

    Article  Google Scholar 

  18. T. McNally, P. Pötschke, Polymer-Carbon Nanotube Composites: Preparation, Properties and Applications (Elsevier Science, Amsterdam, 2011)

    Book  Google Scholar 

  19. G. Parfitt, Dispersion of Solids in Liquids: with Special Reference to Pigments (Elsevier, Amsterdam, 1969)

    Google Scholar 

  20. H. Schubert, Chem.-Ing.-Tech. 51, 4 (1979)

    Article  Google Scholar 

  21. I. Manas-Zloczower, D.L. Feke, Int. Polym. Proc. 4, 1 (1989)

    Article  Google Scholar 

  22. S.P. Rwei, I. Manas-Zloczower, D.L. Feke, Polym. Eng. Sci. 30, 12 (1990)

    Article  Google Scholar 

  23. G.R. Kasaliwal, S. Pegel, A. Goldel, P. Potschke, G. Heinrich, Polymer 51, 12 (2010)

    Article  Google Scholar 

  24. D. Sanli, S.E. Bozbag, C. Erkey, J. Mater. Sci. 47, 7 (2012)

    Google Scholar 

  25. A.N. Khlobystov, D.A. Britz, J. Wang, S.A. O’Neil, M. Poliakoff, G.A.D. Briggs, J. Mater. Chem. 14, 19 (2004)

    Article  Google Scholar 

  26. J.L. Kendall, D.A. Canelas, J.L. Young, J.M. DeSimone, Chem. Rev. 99, 2 (1999)

    Article  Google Scholar 

  27. D. To, R. Dave, X. Yin, S. Sundaresan, AIChE J. 55, 11 (2009)

    Article  Google Scholar 

  28. C.W. Manke, E. Gulari, D.F. MielewskiE.C.-C. Lee, U.S. Patent (2002)

  29. O. Brandt, A.M. Rajathurai, P. Roth, Exp. Fluids 5, 2 (1987)

    Article  Google Scholar 

  30. E. Reverchon, P. Pallado, J. Supercrit. Fluids 9, 4 (1996)

    Google Scholar 

  31. E. Gulari, K. Rangaramanujam G.K. Serhatkulu, US 7387749 (2008)

  32. W.R. Jung, J.H. Choi, N. Lee, K. Shin, J.H. Moon, Y.S. Seo, Carbon 50, 2 (2012)

    Google Scholar 

  33. D. To, S. Sundaresan, R. Dave, J. Nanopart. Res. 13, 9 (2011)

    Article  Google Scholar 

  34. C. Chen, M. Bortner, J.P. Quigley, D.G. Baird, Polym Compos. 33, 6 (2012)

    Google Scholar 

  35. B. Krause, M. Mende, P. Potschke, G. Petzold, Carbon 48, 10 (2010)

    Article  Google Scholar 

  36. S.A. Nanocyl, Product. Datasheet Nanocyl NC 7000 series. Edition 2007-02-05. (Sambreville, Belgium, 2007)

  37. Bayer MaterialScience AG. Data sheet Baytubes® C150P. Edition 2006-01-18 (2006)

  38. Bayer MaterialScience AG. Data sheet Baytubes® C150P. Edition 2009-02-24 (2009)

  39. B. Krause, M. Ritschel, C. Taschner, S. Oswald, W. Gruner, A. Leonhardt, P. Potschke, Compos. Sci. Technol. 70, 1 (2010)

    Article  Google Scholar 

  40. E. W. Lemmon, M. O. McLinden, D. G. Friend, in NIST webbook (Ebook), ed. by P.J. Linstrom, W.G. Mallard (2013)

  41. T. Villmow, B. Kretzschmar, P. Potschke, Compos. Sci. Technol. 70, 14 (2010)

    Article  Google Scholar 

  42. M. Salzano de Luna, L. Pellegrino, M. Daghetta, C.V. Mazzocchia, D. Acierno G. Filippone, Compos. Sci. Technol. 85, 17–22 (2013)

  43. F.Y. Castillo, R. Socher, B. Krause, R. Headrick, B.R. Grady, R. Prada-Silvy, P. Potschke, Polymer 52, 17 (2011)

    Article  Google Scholar 

  44. M. Weber, M.C. Thies, J. Supercrit. Fluids 40, 3 (2007)

    Article  Google Scholar 

  45. G. Kasaliwal, T. Villmow, S. Pegel, P. Potschke, 1st edn (Woodhead Publishing Ltd., 2011), pp. 92–109

Download references

Acknowledgments

The authors would like to thank Bayer Material Science and Nanocyl™ for donating the Baytubes® C150P and NC-7000 MWCNT, respectively. In addition, the authors acknowledge use of the facilities at the Nanoscale Characterization and Fabrication Laboratory at Virginia Polytechnic Institute for the TEM and optical images. Finally, the authors would like to thank Dr. Erdogan Kiran for his assistance in the formulation of the pressure and temperature experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John P. Quigley.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quigley, J.P., Herrington, K., Bortner, M. et al. Benign reduction of carbon nanotube agglomerates using a supercritical carbon dioxide process. Appl. Phys. A 117, 1003–1017 (2014). https://doi.org/10.1007/s00339-014-8791-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8791-7

Keywords

Navigation