Skip to main content
Log in

Hollow graphitic carbon nanospheres: synthesis and properties

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Hollow-graphitized carbon nanospheres (CNS), also known as nanocapsules (CNC), with inner diameter of 20–50 nm and shell thickness of 10–15 nm were synthesized from resorcinol (R) and formaldehyde (F) polymerized in the presence of an iron polymeric complex (IPC). IPC acts as a dispersant for the formation of uniform R–F–Fe carbon precursor and provides iron catalyst/template for the formation of CNS. The uniform and narrow particle size (<3 nm) of the IPC ensures reproducible synthesis of uniform final products with unique properties. The morphology and structure properties of the CNS have been characterized in detail. CNS is as a promising material for replacing carbon black in high-performance and weight-sensitive applications or for replacing CNT in cost-sensitive applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Chang DD (2004) J Mater Sci 39:2645. doi:10.1023/B:JMSC.0000021439.18202.ea

    Article  Google Scholar 

  2. Liang JZ, Yang QQ (2009) J Reinf Plast Compos 28(3):295

    Article  Google Scholar 

  3. Gogotsi YG (2006) Carbon nanomaterials. CRC Press, Boca Raton, p 237

    Book  Google Scholar 

  4. Baughman RH, Zakhidov AA, de Heer WA (2002) Science 297(5582):787

    Article  Google Scholar 

  5. Ajayan PM (1999) Chem Rev 99(7):1787

    Article  Google Scholar 

  6. Li SP, Qin YJ, Shi JH, Guo ZX, Li YF, Zhu DB (2005) Chem Mater 17:130

    Article  Google Scholar 

  7. Kimura T, Ago H, Tobita M, Ohshima S, Kyotani M, Yumura M (2002) Adv Mater 14:1380

    Article  Google Scholar 

  8. Kroto HW, Heath JR, O’Brien SC, Carl RF, Smalley RE (1985) Nature 318(6042):162

    Article  Google Scholar 

  9. Sano N, Wang H, Chlowalla M, Alexandrou I, Amaratuga CAJ (2001) Nature 414(6863):506

    Article  Google Scholar 

  10. Ma Y, Hu Z, Huo K, Lu Y, Hu Y, Liu Y, Hu J, Chen Y (2005) Carbon 43:1667

    Article  Google Scholar 

  11. Wang JN, Zhang L, Niu JJ, Yu F, Sheng ZM, Zhao YZ, Chang H, Pak C (2007) Chem Mater 19(3):453

    Article  Google Scholar 

  12. Wu Z, Zhu X, Ye L, OuYang C, Hu S, Lei L, Xie Y (2006) Inorg Chem 45:8543

    Article  Google Scholar 

  13. Pan KM, Ming H, Liu Y, Kang ZH (2012) New J Chem 36:113

    Article  Google Scholar 

  14. Nieto-Márquez A, Romero R, Romero A, Valverde JL (2011) J Mater Chem 21:1664

    Article  Google Scholar 

  15. Zou G, Yu D, Lu J, Wang D, Jiang C, Qian Y (2004) Solid State Commun 131:749

    Article  Google Scholar 

  16. Fujikawa D, Uota M, Sakai G, Kijima T (2007) Carbon 45:1289

    Article  Google Scholar 

  17. Li Z, Jaroniec M, Lee Y, Radovic LR (2002) Chem Commun 13:1346

    Article  Google Scholar 

  18. Hu G, Ma D, Cheng M, Liu L, Bao X (2002) Chem Commun 17:1948

  19. Xiong Y, Xie Y, Li Z, Wu C, Zhang R (2003) Chem Commun 904

  20. Liu JW, Shao MW, Tang Q, Cheng XY, Liu ZP, Qian YT (2003) Carbon 41:1682

    Article  Google Scholar 

  21. Katcho NA, Urones-Garrote E, Avila-Brande D, Gomez-Herrero A, Urbonaite S, Csillag S et al (2007) Chem Mater 19:2304

    Article  Google Scholar 

  22. Herring AM, Mckinnon JT, McClosky BD, Filley J, Gneshin KW, Pavelka RA et al (2003) J Am Chem Soc 125:9916

    Article  Google Scholar 

  23. Fuertes AB, Alvarez S (2004) Carbon 42:3049

    Article  Google Scholar 

  24. Miao JY, Hwang DW, Narasimhulu KV, Lin PI, Chen YT, Lin SH, Hwang LP (2004) Carbon 42:813

    Article  Google Scholar 

  25. Qiao WM, Song Y, Lim SY, Hong SH, Yoon SH, Mochida I, Imaoka T (2006) Carbon 44:158

    Article  Google Scholar 

  26. Liu TC, Li YY (2006) Carbon 44(10):2045

    Article  Google Scholar 

  27. Kim S, Shibata E, Sergiienko R, Nakamura T (2008) Carbon 46(12):1523

    Article  Google Scholar 

  28. An YL, Liu YQ, Yuan X (2008) Adv Mater Res 58:27

    Article  Google Scholar 

  29. Jang J, Ha H (2003) Chem Mater 15(11):2109

    Article  Google Scholar 

  30. Yasuda A, Kawase N, Banhart F, Mizutani W, Shimizu T, Tokumoto H (2002) J Phys Chem 106(6):1247

    Google Scholar 

  31. Du JM, Kang DJ (2006) Mater Res Bull 41:1785

    Article  Google Scholar 

  32. Osswald S, Behler K, Gogotsi Y (2008) J Appl Phys 104:074308

    Article  Google Scholar 

  33. Li G, Guo C, Sun C, Ju Z, Yang L, Xu L, Qian Y (2008) J Phys Chem C 112:1896

    Article  Google Scholar 

  34. Malis T, Cheng SC, Egerton RF (1988) J Electron Microsc Tech 8:193

    Article  Google Scholar 

  35. Williams DB, Carter CB (1996) Transmission electron microscopy: spectrometry—Part IV. Plenum Press, New York, p 678

    Book  Google Scholar 

  36. Joy DC, Egerton RF, Maher DM (1979) In: O’Hare AMF (ed) Scanning electron microscopy. SEM Inc., Chicago, p 817

    Google Scholar 

  37. Leapman RD, Fiori CE, Swyt CR (1984) J Microsc 133:239

    Article  Google Scholar 

  38. Behler K, Ye H, Osswald S, Dimovski S, Gogotsi Y (2006) J Nanopart Res 8(5):615

    Article  Google Scholar 

  39. Tan PH, Dimovski S, Gogotsi Y (2004) Philos Trans A Math Phys Eng Sci 362:2289

    Article  Google Scholar 

  40. Sobkowicz MJ, Dorgan JR, Gneshin KW, Herring AM, Mckinnon JM (2009) Carbon 47:622

    Article  Google Scholar 

  41. Vix-Guterl C, Couzi M, Dentzer J, Trinquecoste M, Delhaes P (2004) J Phys Chem B 108:19361

    Article  Google Scholar 

  42. Amama PB, Cola BA, Sands TD, Xu XF, Fisher TS (2007) Nanotechnology 18:385303

    Article  Google Scholar 

  43. Cambaz ZG, Yushin G, Osswald S, Mochalin V, Gogotsi Y (2008) Carbon 46(6):841

    Article  Google Scholar 

  44. Osswald S, Havel M, Gogotsi Y (2007) J Raman Spectrosc 38(6):728

    Article  Google Scholar 

  45. Li X, Yuan G, Westwood A, Zhang H, Dong Z, Brown A, Brydson R, Rand B (2008) Chem Vap Depos 14(1–2):40

    Article  Google Scholar 

  46. Amin MH, Amin- Ebrahimabadi M, Rahimipour MR (2009) J Nanomater 2009:1

    Article  Google Scholar 

  47. Dimovski S, Nikitin A, Ye H, Gogotsi Y (2004) Mater Chem 14:238

    Article  Google Scholar 

  48. Nasibulin AG, Anisimov AS, Dikhitsa PV, Jiang H, Brown DP, Choi M, Kauppinen EI (2007) Chem Phys Lett 446:109

    Article  Google Scholar 

  49. Xuan S, Hao L, Jiang W, Gong X, Chen Z (2007) Nanotechnology 18:035602

    Article  Google Scholar 

  50. Kang JL, Li JJ, Du XW, Shi CS, Zhao NQ, Cui L, Nash P (2008) J Alloys Compd 456:290

    Article  Google Scholar 

Download references

Acknowledgements

X-ray Crystallography of the iron precursor crystals was carried out at Hunter College of the City University of New York. The authors thank Dr. Louis J. Todaro for collecting the crystal data and solving the crystal structure. The authors are grateful to Sumitomo Chemical Company for the financial support. The authors thank Dr. Qinghai Gao for good discussions on this project, and the authors thank Mr. Henry Song, Dr. Xiaolan Tang, and Dr. Sun-Hwa Yeon for BET surface area and TGA measurements. The authors thank Dr. Martin Fransson who assisted in the TEM, Raman Spectroscopy, and XRD measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 70 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, C., Bhargava, G., Elwell, M.D. et al. Hollow graphitic carbon nanospheres: synthesis and properties. J Mater Sci 49, 1947–1956 (2014). https://doi.org/10.1007/s10853-013-7796-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7796-5

Keywords

Navigation