Skip to main content

Advertisement

Log in

Energy transfer between Dy3+ and Eu3+ in Dy3+/Eu3+-codoped Gd2MoO6

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Dy3+-doped and Dy3+/Eu3+-codoped Gd2MoO6 phosphors were synthesized by hydrothermal method. The results of X-ray diffraction indicate that the Gd2MoO6 phosphors have crystallized with the monoclinic structure. The emission spectra exhibit emissions at 577 nm and 488 nm that corresponded to the yellow and blue emissions, respectively. The emission intensity of these bands increases with the rise of the Dy3+ up to a particular concentration and then reduces at a higher level. The observed behaviour was explained on the basis of concentration quenching phenomena. The enhancement in the emission intensity of the Dy3+ with the addition of Eu3+ along with the red emission at 617 nm for Eu3+ was noted. The energy transfer between the two rare earth ions was studied. Codoping with the trivalent Eu ions neutralized the red emission part of the phosphor. Thus, by incorporating the adequate quantity of Eu3+ the photometric characteristics of the phosphors can be adjusted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure  2
Figure  3
Figure  4
Figure  5
Figure  6
Figure  7
Figure  8

Similar content being viewed by others

References

  1. Xie RJ, Hirosaki N, Kimura N, Sakuma K, Mitomo M (2007) 2-phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors. Appl Phys Lett 90:191101

    Article  Google Scholar 

  2. Blasse G, Grabmaier BC (1994) Luminescent materials. Springer, Berlin, p 25

    Book  Google Scholar 

  3. Adachi S, Takahashi T (2008) Direct synthesis and properties of K2SiF6:Mn4+ phosphor by wet chemical etching of Si wafer. J Appl Phys 104:023512

    Article  Google Scholar 

  4. Som S, Kunti AK, Vijay Kumar, Vinod Kumar, Dutta S, Chowdhury M, Sharma SK, Terblans JJ, Swart HC (2014) Defect correlated fluorescent quenching and electron phonon coupling in the spectral transition of Eu3+ in CaTiO3 for red emission in display application. J Appl Phys 115:193101

    Article  Google Scholar 

  5. Mishra YK, Kaps S, Schuchardt A, Paulowicz I, Jin X, Gedamu D, Freitag S, Claus M, Wille S, Kovalev A, Gorb SN, Adelung R (2013) Fabrication of macroscopically flexible and highly porous 3D semiconductor networks from interpenetrating nanostructures by a simple flame transport approach. Part Part Syst Charact 30:775–783

    Article  Google Scholar 

  6. Park W, Summers CJ (2002) Photoluminescence properties of red emitting BaGdB9O16: Eu phosphor. J Mater Sci 37:4041–4045

    Article  Google Scholar 

  7. Mohapatra S, Mishra YK, Avasthi DK, Kabiraj D, Ghatak J, Varma S (2008) Synthesis of gold–silicon core–shell nanoparticles with tunable localized surface plasmon resonance. Appl Phys Lett 92:103105

    Article  Google Scholar 

  8. Jin X, Götz M, Wille S, Mishra YK, Adelung R, Zollfrank C (2013) A novel concept for self-reporting materials: stress sensitive photoluminescence in ZnO tetrapod filled elastomers. Adv Mater 25:1342–1347

    Article  Google Scholar 

  9. Daicho H, Iwasaki T, Enomoto K, Sasaki Y, Maeno Y, Shinomiya Y, Aoyagi S, Nishibori E, Sakata M, Sawa H, Matsuishi S, Hosono H (2012) A novel phosphor for glareless white light-emitting diodes. Nat Commun 3:1132

    Article  Google Scholar 

  10. Pimputkar S, Speck JS, DenBaars SP, Nakamura S (2009) Prospects for LED lighting. Nat Photonics 3:180–182

    Article  Google Scholar 

  11. Pust P, Weiler V, Hecht C, Tücks A, Wochnik AS, Henß AK, Wiechert D, Scheu C, Schmidt PJ, Schnick W (2014) Narrow-band red-emitting Sr[LiAl3N4]: Eu2+ as a next-generation LED-phosphor material. Nat Mater 13:891–896

    Article  Google Scholar 

  12. Tan ST, Sun XW, Demir HV, DenBaars SP (2012) Advances in the LED materials and architectures for energy-saving solid-state lighting toward ‘lighting revolution’. IEEE Photonics J 4:613–619

    Article  Google Scholar 

  13. Gao D, Li Y, Lai X, Wei Y, Bi J, Li Y, Liu M (2011) Fabrication and luminescence properties of Dy3+ doped CaMoO4 powders. Mater Chem Phys 126:391–397

    Article  Google Scholar 

  14. Zhu H, Lin CC, Luo W, Shu S, Liu Z, Liu Y, Kong J, Ma E, Cao Y, Liu RS, Chen X (2014) Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes. Nat Commun 5:4312

    Google Scholar 

  15. He XH, Lian N, Sun JH, Guan MY (2009) Dependence of luminescence properties on composition of rare-earth activated (oxy) nitrides phosphors for white-LEDs applications. J Mater Sci 44:4763–4775

    Article  Google Scholar 

  16. Das S, Reddy AA, Babu SS, Prakash GV (2011) Controllable white light emission from Dy3+–Eu3+ co-doped KCaBO3 phosphor. J Mater Sci 46:7770–7775

    Article  Google Scholar 

  17. Nakamura S, Fasol G (1997) The blue laser diode. Springer, New York

    Book  Google Scholar 

  18. Baig N, Dhoble NS, Park K, Kokode NS, Dhoble SJ (2014) Enhanced luminescence and white light emission from Eu3+-co-doped K3Ca2(SO4)3Cl:Dy3+ phosphor with near visible ultraviolet excitation for white LEDs. Luminescence 30:479–484

    Article  Google Scholar 

  19. Liu Y, Liu G, Dong X, Wang J, Yu W (2015) Tunable photoluminescence and magnetic properties of Dy3+ and Eu3+ doped GdVO4 multifunctional phosphors. Phys Chem Chem Phys 17:26638–26644

    Article  Google Scholar 

  20. Niu X, Xun J, Zhang Y (2015) The spectroscopic properties of Dy3+ and Eu3+ co-doped Y3Al5O12 (YAG) phosphors for white LED. Prog Nat Sci Mater Int 25:209–214

    Article  Google Scholar 

  21. Das S, Reddy AA, Prakash GV (2012) Near white light emission from K+ ion compensated CaSO4:Dy3+, Eu3+ phosphors. Ceram Int 38:5769–5773

    Article  Google Scholar 

  22. Som S, Mitra P, Kumar V, Kumar V, Terblans JJ, Swart HC, Sharma SK (2014) The energy transfer phenomena and colour tunability in Y2O2S:Eu3+/Dy3+ micro-fibers for white emission in solid state lighting applications. Dalton Trans 43:9860–9871

    Article  Google Scholar 

  23. Das S, Yang CY, Lu CH (2013) Structural and optical properties of tunable warm-white light-emitting ZrO2:Dy3+–Eu3+ nanocrystals. J Am Ceram Soc 96:1602–1609

    Article  Google Scholar 

  24. Sharma V, Das A, Kumar V, Ntwaeaborwa OM, Swart HC (2014) Potential of Sr4Al14O25: Eu2+, Dy3+ inorganic oxide-based nanophosphor in Latent fingermark detection. J Mater Sci 49:2225–2234

    Article  Google Scholar 

  25. Chen F, Liu X (2013) Structure and photoluminescence properties of La2Mo(W)O6:Eu3+ as red phosphors for white LED applications. Opt Mater 35:2716–2720

    Article  Google Scholar 

  26. Suzuki S, Ryo M, Yamamoto T, Sakata T, Yanagida S, Wada Y (2007) Preparation of luminescent nanosized NaEu(MoO4)2 incorporated in amorphous matrix originated from zeolite. J Mater Sci 42:5991–5998

    Article  Google Scholar 

  27. Wang M, Zhang H, Li L, Liu X, Hong F, Li R, Song H, Gui M, Shen J, Zhu W, Wang J, Zhou L, Jeong JH (2014) Charge transfer bands of Mo–O and photoluminescence properties of micro-material Y2MoO6:Eu3+ red phosphor. J. Alloys Compd 585:138–145

    Article  Google Scholar 

  28. Dutta S, Som S, Sharma SK (2013) Luminescence and photometric characterization of K+ compensated CaMoO4:Dy3+ nanophosphors. Dalton Trans 42:9654

    Article  Google Scholar 

  29. Huang MN, Ma YY, Huang XY, Ye S, Zhang QY (2013) The luminescence properties of Bi3+ sensitized Gd2MoO6: RE3+(RE = Eu or Sm) phosphors for solar spectral conversion. Spectrochim Acta, Part A 115:767–771

    Article  Google Scholar 

  30. Chen Y, Wang J, Liu C, Kuang X, Su Q (2011) A host sensitized reddish-orange Gd2MoO6:Sm3+ phosphor for light emitting diodes. Appl Phys Lett 98:081917

    Article  Google Scholar 

  31. Liu B, Shi C, Qi Z (2005) Potential white-light long-lasting phosphor: Dy3+-doped aluminate. Appl Phys Lett 86:191111

    Article  Google Scholar 

  32. Bedyal AK, Kumar V, Sharma V, Singh F, Lochab SP, Ntwaeaborwa OM, Swart HC (2014) Swift heavy ion induced structural, optical and luminescence modification in NaSrBO3:Dy3+ phosphor. J Mater Sci 49:6404–6412

    Article  Google Scholar 

  33. Liu Q, Liu Y, Yang Z, Han Y, Li X, Fu G (2012) Multiwavelength excited white-emitting phosphor Dy3+-activated Ba3Bi(PO4)3. J. Alloys Compd 515:16–19

    Article  Google Scholar 

  34. Viola MDC, Sangra AM, Pedregosa JC (1993) Vibrational spectroscopic characterization of lanthanide molybdates. J Mater Sci 28:6587–6590

    Article  Google Scholar 

  35. Tian Y, Chen B, Hua R, Sun J, Cheng L, Zhong H, Li X, Zhang J, Zheng Y, Yu T, Huang L, Yu H (2011) Optical transition, electron-phonon coupling and fluorescent quenching of La2 (MoO4)3: Eu3+ phosphor. J Appl Phys 109:053511

    Article  Google Scholar 

  36. Wan J, Cheng L, Sun J, Zhong H, Li X, Lu W, Tian Y, Lin H, Chen B (2010) Energy transfer and colorimetric properties of Eu3+/Dy3+ codoped Gd2(MoO4)3 phosphors. J. Alloys Compd 496:331–334

    Article  Google Scholar 

  37. Wu Y, Wang Y, He D, Fu M, Zhao Y, Li Y, Miao F (2011) Synthesis and luminescence properties of Sr2SiO4: Eu3+, Dy3+ phosphors by the sol–gel method. J Nanosci Nanotechnol 11:9439–9444

    Article  Google Scholar 

  38. Gedamu D, Paulowicz I, Kaps S, Lupan O, Wille S, Haidarschin G, Mishra YK, Adelung R (2014) Rapid fabrication technique for interpenetrated ZnO nanotetrapod networks for fast UV sensors. Adv Mater 26:1541–1550

    Article  Google Scholar 

  39. Liu X, Li L, Noh HM, Moon BK, Choib BC, Jeong JH (2014) Chemical bond properties and charge transfer bands of O2−–Eu3+, O2−–Mo6+ and O2−–W6+ in Eu3+-doped garnet hosts Ln3M5O12 and ABO4 molybdate and tungstate phosphors. Dalton Trans 43:8814–8825

    Article  Google Scholar 

  40. Wang J, Ning G, Gong W, Ye J, Lin Y (2011) Synthesis and luminescence properties of a novel Eu3+, Tb3+ codoped Al18B4O33 whiskers by a gel nano-coating method. J Mater Sci 46:1259–1263

    Article  Google Scholar 

  41. Som S, Sharma SK (2012) Eu3+/Tb3+ codoped Y2O3 nanophosphors: rietveld refinement, Bandgap and Photoluminescence optimization. J Phys D Appl Phys 45:415102

    Article  Google Scholar 

  42. Xie RJ, Hirosaki N (2007) Silicon-based oxynitride and nitride phosphors for white LEDs—a review. Sci Technol Adv Mater 8:588–600

    Article  Google Scholar 

  43. Zhuang Z, Guo X, Liu B, Hu F, Li Y, Tao T, Dai J, Zhi T, Xie Z, Chen P, Chen D, Ge H, Wang X, Xiao M, Shi Y, Zheng Y, Zhang R (2016) High color rendering index hybrid III-nitride/nanocrystals white light-emitting diodes. Adv Funct Mater 26:36–43

    Article  Google Scholar 

  44. Bhaviripudi S, Qi J, Hu EL, Belcher AM (2007) Synthesis, characterization, and optical properties of ordered arrays of III-nitride nanocrystals. Nano Lett 7:3512–3517

    Article  Google Scholar 

  45. Grum F, Saunders SB, Macadam DL (1978) Concept of correlated color temperature. Color Res Appl 3:17–21

    Article  Google Scholar 

  46. Liu WR, Huang CH, Wu CP, Chiu YC, Yeh YT, Chen TM (2011) High efficiency and high color purity blue-emitting NaSrBO3:Ce3+ phosphor for near-UV light-emitting diodes. J Mater Chem 21:6869–6874

    Article  Google Scholar 

  47. Achermann M, Petruska MA, Kos S, Smith DL, Koleske DD, Klimov VI (2004) Energy-transfer pumping of semiconductor nanocrystals using an epitaxial quantum well. Nature 429:642–646

    Article  Google Scholar 

  48. Dutta S, Som S, Sharma SK (2015) Excitation spectra and luminescence decay analysis of K+ compensated Dy3+ doped CaMoO4 phosphors. RSC Adv 5:7380

    Article  Google Scholar 

  49. Lv X, Xue X, Huang Y, Zhuang Z, Lin Z (2014) The relationship between photoluminescence (PL) decay and crystal growth kinetics in thioglycolic acid (TGA) capped CdTe quantum dots (QDs). Phys Chem Chem Phys 16:11747–11753

    Article  Google Scholar 

  50. Califano M (2015) Origins of photoluminescence decay kinetics in CdTe colloidal quantum dots. ACS Nano 9:2960–2967

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Department of Science and Technology, New Delhi (Government of India), for funding this work under the Project SR/FTP/PS-087/2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutta, S., Sharma, S.K. Energy transfer between Dy3+ and Eu3+ in Dy3+/Eu3+-codoped Gd2MoO6 . J Mater Sci 51, 6750–6760 (2016). https://doi.org/10.1007/s10853-016-9962-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-9962-z

Keywords

Navigation