Skip to main content
Log in

Studies on electrodeposition behavior of Sn–Bi alloys in plating baths modified by hydroquinone and gelatin

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This work focuses on the investigation of the electrochemical behavior of Sn–Bi plating bath modified by two electrolyte additives, hydroquinone (HQ) and gelatin. Electrochemical studies were carried out by low sweep rate polarization scans, as well as cyclic voltammetry at different scan rates (1–40 mV/s). Polarization scans at sweep rate of 1 mV/s indicate that Bi deposits at about −25 to −45 mV while Sn deposits at about −410 to −420 mV in the plating bath without additives or with either one of the additives. The addition of HQ suppresses hydrogen evolution to more electronegative potentials, showing its adsorption capabilities. On the other hand, gelatin shifts the deposition potential of Bi and is suggested to have a mild complexing effect with Bi ions. The synergistic effect of both HQ and gelatin reduces the potential gap between Bi and Sn from 429 to 255 mV. Investigations on single metallic Sn and Bi plating baths at varying sweep rates reveal different behavior of Sn and Bi ions. The shifting and broadening of Bi cathodic peak potential upon HQ + gelatin addition suggest the formation of HQ–gelatin complex species. Surface morphology and composition analyses were conducted on electrodeposits from each plating bath. Near-eutectic Sn–Bi alloy was successfully electrodeposited from the plating bath modified by HQ + gelatin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Briggs E (2011) Advantages of bismuth-based alloys for low temperature Pb-free soldering and rework. In: International conference on soldering & reliability, surface mount technology association (SMTA), Toronto

  2. He H, Xu G, Guo F (2010) Electromigration-induced Bi-rich whisker growth in Cu/Sn–58Bi/Cu solder joints. J Mater Sci 45:334. doi:10.1007/s10853-009-3939-0

    Article  Google Scholar 

  3. Lee Y-G, Park J-G, Lee C-W, Jung J-P (2011) Electrodeposition of the Sn-58 wt%Bi layer for low-temperature soldering. Met Mater Int 17:117. doi:10.1007/s12540-011-0216-y

    Article  Google Scholar 

  4. Wang J, Liu HS, Liu LB, Jin ZP (2006) Interfacial reaction between Sn-Bi alloy and Ni substrate. J Electron Mater 35:1842. doi:10.1007/s11664-006-0166-1

    Article  Google Scholar 

  5. Yoon JW, Lee CB, Jung SB (2002) Interfacial reactions between Sn-58 mass% Bi eutectic solder and (Cu, electroless Ni-P/Cu) substrate. Mater Trans 43:1821

    Article  Google Scholar 

  6. Brenner A (1963) Electrodeposition of alloys: principles and practice. Academic Press, New York

    Google Scholar 

  7. Schlesinger M, Paunovic M (2010) Modern electroplating. Wiley, Hoboken

    Book  Google Scholar 

  8. Goh Y, Haseeb ASMA, Sabri MFM (2013) Effects of hydroquinone and gelatin on the electrodeposition of Sn-Bi low temperature Pb-free solder. Electrochim Acta 90:265. doi:10.1016/j.electacta.2012.12.036

    Article  Google Scholar 

  9. Suh M-S, Park C-J, Kwon H-S (2006) Effects of plating parameters on alloy composition and microstructure of Sn–Bi electrodeposits from methane sulphonate bath. Surf Coat Technol 200:3527. doi:10.1016/j.surfcoat.2004.08.162

    Article  Google Scholar 

  10. Tsai Y-D, Hu C-C, Lin C-C (2007) Electrodeposition of Sn–Bi lead-free solders: Effects of complex agents on the composition, adhesion, and dendrite formation. Electrochim Acta 53:2040. doi:10.1016/j.electacta.2007.09.002

    Article  Google Scholar 

  11. Tsai Y-D, Hu C-C (2009) Composition control of Sn–Bi deposits: interactive effects of citric acid, ethylenediaminetetraacetic acid, and poly(ethylene glycol). J Electrochem Soc 156:D490. doi:10.1149/1.3224861

    Article  Google Scholar 

  12. Tsai Y-D, Lien C-H, Hu C-C (2011) Effects of polyethylene glycol and gelatin on the crystal size, morphology, and Sn2+-sensing ability of bismuth deposits. Electrochim Acta 56:7615. doi:10.1016/j.electacta.2011.06.077

    Article  Google Scholar 

  13. Fukuda M, Imayoshi K, Matsumoto Y (2001) Effect of polyoxyethylenelaurylether on electrodeposition of Pb-free Sn-Bi alloy. Electrochim Acta 47:459

    Article  Google Scholar 

  14. Goh Y, Haseeb A, Liew HL, Sabri MFM (2015) Deformation and fracture behaviour of electroplated Sn–Bi/Cu solder joints. J Mater Sci 50:4258. doi:10.1007/s10853-015-8978-0

    Article  Google Scholar 

  15. Vuković M, Pesic B, Štrbac N, Mihajlović I, Sokić M (2012) Linear polarization study of the corrosion of iron in the presence of Thiobacillus ferrooxidans bacteria. Int J Electrochem Sci 7:2487

    Google Scholar 

  16. Neveu B, Lallemand F, Poupon G, Mekhalif Z (2006) Electrodeposition of Pb-free Sn alloys in pulsed current. Appl Surf Sci 252:3561. doi:10.1016/j.apsusc.2005.05.024

    Article  Google Scholar 

  17. Phong N, Tuyet N, Linh D et al (2006) An application of electrochemical method for studying nano-composite plating. Met Mater Int 12:493. doi:10.1007/bf03027749

    Article  Google Scholar 

  18. Low CTJ, Walsh FC (2008) The stability of an acidic tin methanesulfonate electrolyte in the presence of a hydroquinone antioxidant. Electrochim Acta 53:5280. doi:10.1016/j.electacta.2008.01.093

    Article  Google Scholar 

  19. Fukuda M, Imayoshi K, Matsumoto Y (2002) Effects of thiourea and polyoxyethylene lauryl ether on electrodeposition of Sn-Ag-Cu alloy as a Pb-free solder. J Electrochem Soc 149:C244. doi:10.1149/1.1463404

    Article  Google Scholar 

  20. Joseph S, Phatak GJ (2008) Effect of surfactant on the bath stability and electrodeposition of Sn–Ag–Cu films. Surf Coat Technol 202:3023. doi:10.1016/j.surfcoat.2007.11.002

    Article  Google Scholar 

  21. Wei G, Ge H, Zhu X, Wu Q, Yu J, Wang B (2007) Effect of organic additives on characterization of electrodeposited Co-W thin films. Appl Surf Sci 253:7461. doi:10.1016/j.apsusc.2007.03.045

    Article  Google Scholar 

  22. Hou P, D-x Han L, Niu H-b Lin (2006) Electrochemistry of hydroquinone derivatives at metal and iodine-modified metal electrodes. Chem Res Chin Univ 22:493. doi:10.1016/S1005-9040(06)60149-9

    Article  Google Scholar 

  23. Soriaga MP, White JH, Song D, Hubbard AT (1984) Adsorption and orientation of aromatic compounds at smooth polycrystalline platinum electrodes: the effect of halide electrolytes. J Electroanal Chem Interfacial Electrochem 171:359. doi:10.1016/0022-0728(84)80128-X

    Article  Google Scholar 

  24. Brown GM, Hope GA (1995) SERS study of the adsorption of gelatin at a copper electrode in sulfuric-acid-solution. J Electroanal Chem 397:293

    Article  Google Scholar 

  25. Meudre C, Ricq L, Hihn J-Y, Moutarlier V, Monnin A, Heintz O (2014) Adsorption of gelatin during electrodeposition of copper and tin–copper alloys from acid sulfate electrolyte. Surf Coat Technol 252:93. doi:10.1016/j.surfcoat.2014.04.050

    Article  Google Scholar 

  26. Stavila V, Davidovich RL, Gulea A, Whitmire KH (2006) Bismuth (III) complexes with aminopolycarboxylate and polyaminopolycarboxylate ligands: chemistry and structure. Coord Chem Rev 250:2782. doi:10.1016/j.ccr.2006.02.032

    Article  Google Scholar 

  27. Fischer G (2012) Stabilizers for photographic silver halide emulsions: progress in chemistry and application. Springer, Berlin

    Google Scholar 

  28. Jeong L, Park WH (2014) Preparation and characterization of gelatin nanofibers containing silver nanoparticles. Int J Mol Sci 15:6857

    Article  Google Scholar 

  29. Król-Gracz A, Nowak P, Michalak E, Dyonizy A (2012) Hydro-quinone synthesis of silver nanoparticles from silver bromide suspensions. Acta Physica Polonica-Ser A Gener Phys 121:196

    Article  Google Scholar 

  30. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Suppl. 7, overall evaluations of carcinogenicity: an updating of IARC monographs (1987), Lyon

  31. Ishikawa T (2010) Guanidine chemistry. Chem Pharm Bull 58:1555

    Article  Google Scholar 

  32. Zhao G, Li M, Hu Z, Li H, Cao T (2006) Electrocatalytic redox of hydroquinone by two forms of l-proline. J Mol Catal A: Chem 255:86. doi:10.1016/j.molcata.2006.03.039

    Article  Google Scholar 

  33. Yang K, Mahmoudian MR, Ebadi M, Koay H, Basirun W (2011) Diffusion coefficient of Tin(II) methanesulfonate in ionic liquid and methane sulfonic acid (MSA) solvent. Metall Mater Trans B 42:1274. doi:10.1007/s11663-011-9560-z

    Article  Google Scholar 

  34. Goh Y, Lee SF, Haseeb ASMA (2013) Formation of Sn-Bi solder alloys by sequential electrodeposition and reflow. J Mater Sci-Mater Electron 24:2052. doi:10.1007/s10854-012-1055-4

    Article  Google Scholar 

  35. Raub E, Müller K (1967) Fundamentals of metal deposition. Elsevier, Spain

    Google Scholar 

  36. Park W, Hong H-G (2006) Determination of reorganization energy from the temperature dependence of electron transfer rate constant for hydroquinone-tethered self-assembled monolayers (SAMs). Bull Korean Chem Soc 27:381

    Article  Google Scholar 

  37. March G, Reisberg S, Piro B et al (2008) Electrochemical kinetic analysis of a 1,4-hydroxynaphthoquinone self-assembled monolayer. J Electroanal Chem 622:37. doi:10.1016/j.jelechem.2008.04.030

    Article  Google Scholar 

  38. Desic Maja N, Popovic Milica M, Obradovic Maja D, Vracar Ljiljana M, Grgur BN (2005) Study of gold-platinum and platinum-gold surface modification and its influence on hydrogen evolution and oxygen reduction. J Serb Chem Soc 70:231

    Article  Google Scholar 

  39. Zafar A, Melendez R, Geib SJ, Hamilton AD (2002) Hydrogen bond controlled aggregation of guanidinium-carboxylate derivatives in the solid state. Tetrahedron 58:683

    Article  Google Scholar 

Download references

Acknowledgements

This research is financially supported by the University of Malaya High Impact Research Grant (HIRG) No. UM.C/HIR/MOHE/ENG/26 (D000026-16001). The authors gratefully acknowledge the helpful discussions with Prof. Jean-Pierre Celis (Department of Materials Engineering, KU Leuven Belgium).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yingxin Goh or A. S. M. A. Haseeb.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goh, Y., Haseeb, A.S.M.A. Studies on electrodeposition behavior of Sn–Bi alloys in plating baths modified by hydroquinone and gelatin. J Mater Sci 51, 5823–5833 (2016). https://doi.org/10.1007/s10853-016-9883-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-9883-x

Keywords

Navigation