Skip to main content
Log in

Electrodeposition of Sn-Ni Alloy Coatings for Water-Splitting Application from Alkaline Medium

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In this work, Sn-Ni alloy coatings were developed onto the surface of copper from a newly formulated electrolytic bath by a simple and cost-effective electrodeposition technique using gelatin as an additive. The electrocatalytic behavior of coatings deposited at different current densities (c.d.’s) for water-splitting applications, in terms of hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), has been researched. The experimental results showed that the electrocatalytic activity of Sn-Ni coatings has a close relationship with its composition, surface morphology, and phase structure depending on the c.d. used, supported by scanning electron microscopy (SEM-EDX) and X-ray diffraction (XRD) analyses. Cyclic voltammetry and chronopotentiometry techniques have demonstrated that Sn-Ni alloy deposited at 4.0 A dm−2 (having 37.6 wt pct Ni) and 1.0 A dm−2 (having 19.6 wt pct Ni) exhibit, respectively, the highest electrocatalytic behavior for HER and OER in 1.0-M KOH solution. Sn-Ni alloy coatings were found to be stable under working conditions of electrolysis, confirmed by electrochemical corrosion tests. High electrocatalytic activity of Sn-Ni alloy coatings for both HER and OER is specific to their composition, surface morphology, and active surface area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A. Wieckowski, E.R. Savinova, and C.G. Vayenas: Catalysis and Electrocatalysis at Nanoparticle Surfaces, Taylor and Francis, Oxford, U.K., 2003.

    Book  Google Scholar 

  2. J. Liu, H. Watanabe, M. Fuji, and M. Takahashi: Electrochem. Commun., 2009, vol. 11, pp. 107-10.

    Article  Google Scholar 

  3. F. Safizadeh, E. Ghali, and G. Houlachi: Int. J. Hydrogen Energy., 2015, vol. 40, pp. 256-74.

    Article  Google Scholar 

  4. Y. Ullal and A.C. Hegde: Int. J. Hydrogen Energy., 2014, vol. 39, pp. 10485-92.

    Article  Google Scholar 

  5. S.M.A. Shibli and J.N. Sebeelamol: Int. J. Hydrogen Energy., 2013, vol. 38, pp. 2271-82.

    Article  Google Scholar 

  6. S.M.A. Shibli and V.S. Dilimon: Int. J. Hydrogen Energy., 2008, vol. 33, pp. 1104-11.

    Article  Google Scholar 

  7. S.M.A. Shibli and V.S. Dilimon: Int. J. Hydrogen Energy., 2007, vol. 32, pp. 1694-700.

    Article  Google Scholar 

  8. R. Solmaz and G. Kardaş: Electrochim. Acta., 2009, vol. 54, pp. 3726-34.

    Article  Google Scholar 

  9. C.A.C. Sequeira, D.M.F. Santos, and P.S.D. Brito: Energy., 2011, vol. 36, pp. 847-53.

    Article  Google Scholar 

  10. R.K. Shervedani and A.R. Madram: Electrochim. Acta., 2007, vol. 53, pp. 426-33.

    Article  Google Scholar 

  11. N.R. Elezović, V.D. Jović, and N.V. Krstajić: Electrochim. Acta., 2005, vol. 50, pp. 5594-601.

    Article  Google Scholar 

  12. L.J. Song and H.M. Meng: Int. J. Hydrogen Energy., 2010, vol. 35, pp. 10060-6.

    Article  Google Scholar 

  13. N.V. Krstajić, L. Gajić-Krstajić, U. Lačnjevac, B.M. Jović, S. Mora, and V.D. Jović: Int. J. Hydrogen Energy., 2011, vol. 36, pp. 6441-9.

    Article  Google Scholar 

  14. N.V. Krstajić, U. Lačnjevac, B.M. Jović, S. Mora, and V.D. Jović: Int. J. Hydrogen Energy., 2011, vol. 36, pp. 6450-61.

    Article  Google Scholar 

  15. I.A. Raj and K.I. Vasu: J. Appl. Electrochem., 1990, vol. 20, pp. 32-8.

    Article  Google Scholar 

  16. I.A. Raj: Int. J. Hydrogen Energy., 1992, vol. 17, pp. 413-21.

    Google Scholar 

  17. I.A. Raj: J. Mater. Sci., 1993, vol. 28, pp. 4375-82.

    Article  Google Scholar 

  18. I.A. Raj and K.I. Vasu: J. Appl. Electrochem., 1992, vol. 22, pp. 471-7.

    Article  Google Scholar 

  19. H. Yamashita, T. Yamamura, and K. Yoshimoto: J. Electrochem. Soc., 1993, vol. 140, pp. 2238-43.

    Article  Google Scholar 

  20. M.B.F. Santos, E. Peres da Silva, R. Andrade Jr., and J.A.F. Dias: Electrochim. Acta., 1992, vol. 37, pp. 29-32.

    Article  Google Scholar 

  21. B.M. Jović, U.Č. Lačnjevac, N.V. Krstajić, and V.D. Jović: Electrochim. Acta., 2013, vol. 114, pp. 813-8.

    Article  Google Scholar 

  22. V.D. Jović, U.Č. Lačnjevac, B.M. Jović, Lj. Karanović, and N.V. Krstajić: Int. J. Hydrogen Energy., 2012, vol. 37, pp. 17882–91.

  23. J. Vijayakumar, S. Mohan, S.A. Kumar, S.R. Suseendiran, and S. Pavithra: Int. J. Hydrogen Energy., 2013, vol. 38, pp. 10208-14.

    Article  Google Scholar 

  24. C.I. Müller, T. Rauscher, A. Schmidt, T. Schubert, T. Weißgärber, B. Kieback, and L. Röntzsch: Int. J. Hydrogen Energy., 2014, vol. 39, pp. 8926-37.

    Article  Google Scholar 

  25. N. Parthasaradhy: Practical Electroplating Handbook (Retroactive Coverage), Prentice-Hall, Inc., Upper Saddle River, NJ, 1996, pp. 1444-989.

    Google Scholar 

  26. A. Brenner: Electrodeposition of Alloys, Principles and Practice, Academic Press, New York, NY, 1963.

    Google Scholar 

  27. L. Anicaia, A. Petica, S. Costovici, P. Prioteasa, and T. Visan: Electrochim. Acta., 2013, vol. 114, pp. 868–877.

    Article  Google Scholar 

  28. C. Lupi, A. Dell’Era, and M. Pasquali: Int. J. Hydrogen Energy., 2009, vol. 34, pp. 2101-6.

    Article  Google Scholar 

  29. I. Herraiz-Cardona, E. Ortega, J.G. Antón, and V. Pérez-Herranz: Int. J. Hydrogen Energy., 2011, vol. 36, pp. 9428-38.

    Article  Google Scholar 

  30. F.G. Thomas and G. Henze: Introduction to Voltammetric Analysis, Theory and Practice, CSIRO Publishing, Australia, 2001.

    Google Scholar 

  31. S.H. Ahn, S.J. Hwang, S.J. Yoo, I. Choi, H-J. Kim, J.H. Jang, S.W. Nam, T-H. Lim, T. Lim, S.-K. Kim, and J.J Kim: J. Mater. Chem., 2012, vol. 22, pp. 15153–59.

  32. R. Gómez, J.M. Feliu, and A. Aldaz: Electrochim. Acta., 1997, vol. 42, pp. 1675-83.

    Article  Google Scholar 

  33. G.S. Tasić, U. Lačnjevac, M.M. Tasić, M.M. Kaninski, V.M. Nikolić, D.L Žugić, and V.D. Jović: Int. J. Hydrogen Energy., 2013, vol. 38, pp. 4291-7.

    Article  Google Scholar 

  34. Y. Choquette, L. Brossard, A. Lasia, and H. Menard: J. Electrochem. Soc., 1990, vol. 137, pp. 1723-30.

    Article  Google Scholar 

  35. J. Kubisztal and A. Budniok: Int. J. Hydrogen Energy., 2008, vol. 33, pp. 4488-94.

    Article  Google Scholar 

  36. L. Elias, K. Scott, and A.C. Hegde: J. Mater. Eng. Perform., 2015, vol. 24, pp. 4182-91.

    Article  Google Scholar 

Download references

Acknowledgments

The author, Sandhya Shetty, is thankful to NITK, Surathkal, India, for supporting this research in the form of an Institute Research Fellowship. Authors are thankful to the Department of Met. and Mat. Eng., NITK, Surathkal, for extending SEM and EDS facilities for analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Chitharanjan Hegde.

Additional information

Manuscript submitted February 5, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shetty, S., Hegde, A.C. Electrodeposition of Sn-Ni Alloy Coatings for Water-Splitting Application from Alkaline Medium. Metall Mater Trans B 48, 632–641 (2017). https://doi.org/10.1007/s11663-016-0784-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0784-9

Keywords

Navigation