Skip to main content
Log in

Nitridation-assisted Al infiltration for fabricating Al composites

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, we developed an Mg-, vacuum-, and pressure-free process for manufacturing Al-based composites via nitridation-assisted spontaneous infiltration of molten Al. In this process, the wettability between molten Al and ceramic reinforcement was significantly enhanced by nitridation via heating and surface modification of the Al particles; this provided a sufficient capillary force (i.e., negative curvature) for spontaneous infiltration of molten Al. The proposed process can generate composites based on Mg-free Al matrices and is relatively versatile in terms of the type, volume fraction, and morphology of the reinforcement material. Furthermore, the properties of the final composites can be modified by controlling their degree of nitridation, thereby expanding the material scope and their corresponding application fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Kainer KU (2006) Metal matrix composites: custom-made materials for automotive and aerospace engineering. Wiley, Weinheim

    Book  Google Scholar 

  2. Miracle DB (2005) Metal matrix composites: from science to technological significance. Compos Sci Technol 65:2526–2540

    Article  Google Scholar 

  3. Mortensen A, Jin I (1992) Solidification processing of metal matrix composites. Int Mater Rev 37(1):101–128

    Article  Google Scholar 

  4. Ibrahim IA, Mohamed FA, Lavernia EJ (1991) Particulate reinforced metal matrix composites: a review. J Mater Sci 26(5):1137–1156. doi:10.1007/BF00544448

    Article  Google Scholar 

  5. Rohatgi PK, Asthana R, Das S (1986) Solidification, structures, and properties of cast metal-ceramic particle composites. Int Met Rev 31(1):115–139

    Article  Google Scholar 

  6. Ray S (1993) Synthesis of cast metal matrix particulate composites. J Mater Sci 28(20):5397–5413. doi:10.1007/BF00367809

    Article  Google Scholar 

  7. Evans A, Marchi CS, Mortensen A (2003) Metal matrix composites in industry: an introduction and a survey. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  8. Surappa MK (2003) Aluminium matrix composites: challenges and opportunities. Sadhana 28:319–334

    Article  Google Scholar 

  9. Aghajanian MK, Burke JT, White DR, Nagelberg AS (1989) A new infiltration process for the fabrication of metal matrix composites. Sampe Q 20:43–46

    Google Scholar 

  10. Rao BS, Jayaram V (2001) Pressureless infiltration of Al–Mg based alloys into Al2O3 preforms: mechanisms and phenomenology. Acta Mater 49:2373–2385

    Article  Google Scholar 

  11. Rao BS, Jayaram V (2001) New technique for pressureless infiltration of Al alloys into Al2O3 preforms. J Mater Res 16(10):2906–2913

    Article  Google Scholar 

  12. Sercombe TB, Schaffer GB (2004) On the role of magnesium and nitrogen in the infiltration of aluminum by aluminum for rapid prototyping applications. Acta Mater 52(10):3019–3025

    Article  Google Scholar 

  13. Peng YU, Yan M, Schaffer GB, Qian MA (2010) Pressureless infiltration and resulting mechanical properties of Al–AlN preforms fabricated by selective laser sintering and partial nitridation. Metall Mater Trans A 41(9):2417–2424

    Article  Google Scholar 

  14. Peng YU, Qian MA, Li Ling, Schaffer GB (2010) On the infiltration mode during fabrication of aluminium composite. Acta Mater 58(10):3790–3797

    Article  Google Scholar 

  15. Kim SH, Noh JH, Ahn JP, Lee JC, Kwon H, Lee JG, Yang HR, Lee KB (2015) Effects of surface oxide on the nitridation behavior of aluminum particles. Metall Mater Trans A 46:496–504

    Article  Google Scholar 

  16. Geiger AL, Hasselman DPH, Welch P (1997) Electrical and thermal conductivity of discontinuously reinforced aluminum composites at sub-ambient temperatures. Acta Mater 45(9):3911–3914

    Article  Google Scholar 

  17. Chu K, Jia C, Tian W, Liang X, Chen H, Guo H (2010) Thermal conductivity of spark plasma sintering consolidated SiCp/Al composites containing pores: numerical study and experimental validation. Compos Part A 41(1):161–167

    Article  Google Scholar 

  18. Yang XF, Xi XM (1995) Critical wetting angle for spontaneous liquid infiltration into orderly packed fibres or spheres. J Mater Sci 30(20):5099–5102. doi:10.1007/BF00356055

    Article  Google Scholar 

  19. Prin GR, Baffie T, Jeymond M, Eustathopoulos N (2001) Contact angles and spreading kinetics of Al and Al–Cu alloys on sintered AlN. Mater Sci Eng, A 298(1):34–43

    Article  Google Scholar 

  20. Tomsia AP, Pask JA, Loehman RE (1989) Joining nitride ceramics. Ceram Eng Sci Proc 10:1631–1654

    Article  Google Scholar 

  21. Sangiorgi R, Muolo ML, Eustathopoulos N (1994) Crystal growth processes based on capillarity. In: Proceedings of International Conferences High Temperature Capillarity. Smolenice Castle, pp. 148–154

  22. Ho HN, Wu ST (1998) The wettability of molten aluminum on sintered aluminum nitride substrate. Mater Sci Eng A 248(1):120–124

    Article  Google Scholar 

  23. Rhee SK (1970) Wetting of ceramics by liquid aluminum. J Am Ceram Soc 53(7):386–389

    Article  Google Scholar 

  24. Nicholas MG, Mortimer DA, Jones LM, Crispin RM (1990) Crispin, some observations on the wetting and bonding of nitride ceramics. J Mater Sci 25(6):2679–2689. doi:10.1007/BF00584866

    Article  Google Scholar 

  25. Trumble KP (1998) Spontaneous infiltration of non-cylindrical porosity: close-packed spheres. Acta Mater 46(7):2363–2367

    Article  Google Scholar 

  26. Saravanan RA, Molina JM, Narciso J, Garcı´a-Cordovilla C, Louis E (2001) Effects of nitrogen on the surface tension of pure aluminium at high temperatures. Scr Mater 44(6):965–970

    Article  Google Scholar 

  27. Kobayashi Y, Kobashi M, Kanetake N (2008) Reactive infiltration of TiN powder preform with molten aluminum for the fabrication of nitride ceramics composite. Mater Trans 49(7):1616–1620

    Article  Google Scholar 

  28. Gonzalez EJ, Trumble KP (1996) Spontaneous infiltration of alumina by copper-oxygen alloys. J Am Ceram Soc 79(1):114–120

    Article  Google Scholar 

  29. Asthana R, Singh M, Sobczak N (2005) Infiltration processing of ceramic—metal composites: the role of wettability, reaction, and capillary flow. J Korean Ceram Soc 42(11):703–717

    Article  Google Scholar 

  30. Mortensen A, Cornie JA (1987) On the infiltration of metal matrix composites. Metall Trans A 18(13):1160–1163

    Article  Google Scholar 

  31. Haibo J, Chen K, Heping Z, Agathopoulos S, Fabrichnaya O, Ferreira JMF (2005) Direct nitridation of molten Al (Mg, Si) alloy to AlN. J Cryst Growth 281(2):639–645

    Article  Google Scholar 

  32. Zheng Q, Wu BANQIU, Reddy RG (2003) In-Situ processing of Al alloy composites. Adv Eng Mater 5(3):167–172

    Article  Google Scholar 

  33. Schaffer GB, Hall BJ (2002) The influence of the atmosphere on the sintering of aluminum. Metall Mater Trans A 33(10):3279–3284

    Article  Google Scholar 

  34. Lumley RN, Sercombe TB, Schaffer GB (1999) Surface oxide and the role of magnesium during the sintering of aluminum. Metall Mater Trans A 30(2):457–463

    Article  Google Scholar 

  35. Laurent V, Chatain D, Chatillon C, Eustathopoulos N (1988) Wettability of monocrystalline alumina by aluminum between its melting point and 1273 K. Acta Mater 36(7):1797–1803

    Article  Google Scholar 

  36. Kent D, Drennan J, Schaffer GB (2011) A morphological study of nitride formed on Al at low temperature in the presence of Mg. Acta Mater 59(6):2469–2480

    Article  Google Scholar 

  37. Scholz H, Greil P (1991) Nitridation reactions of molten Al–(Mg, Si) alloys. J Mater Sci 26(3):669–677. doi:10.1007/BF00588302

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program of the National Research Foundation of Korea (NRF) [2014R1A1A2057846 and 2009-0093814].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jae-Pyoung Ahn or Hyun-Joo Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, KB., Yoo, SH., Kim, HS. et al. Nitridation-assisted Al infiltration for fabricating Al composites. J Mater Sci 52, 4333–4344 (2017). https://doi.org/10.1007/s10853-016-0571-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0571-7

Keywords

Navigation