Skip to main content
Log in

Effects of Surface Oxide on the Nitridation Behavior of Aluminum Particles

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A detailed transmission electron microscopy study coupled with electron energy loss spectroscopy was conducted on AlN formed by the direct nitridation of Al particles under nitrogen atmosphere. The nitridation mechanism comprised two steps: the formation of AlN shell on Al particles and the growth of AlN with a lath type in Al droplets. Here, we found that the surface oxide layer of the Al particles acted as a channel layer, which supplied nitrogen in the atomic state to liquid Al, after being transformed into a thin AlON layer during the initial nitridation. In the Al particles, the inward growth of AlN with a shell structure occurred at the sub layer of the AlON layer. On the other hand, the extracted liquid Al droplets formed after the cracking of the AlN shell rested on the Al particles surrounded by the AlON layer. The nitridation of the droplets began at the interface between the Al particle and droplet and not at the free surface and grew outward from the droplet. Herein, based on the observation of the AlON layer formation, we propose a new mechanism for the nitridation of Al particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. G. Selvaduray, L. Sheet: Mater. Sci. Tech-lond., 1993, vol. 9, pp. 463-73.

    Article  Google Scholar 

  2. J. Haibo, K. Chen, Z. Heping, S. Agathopoulos, O. Fabrichnaya, J.M.F Ferreira: J. Cryst. Growth, 2005, vol. 281, pp. 639-45.

    Article  Google Scholar 

  3. T. Okada, M. Toriyama, S. Kanzaki: J. Mater. Sci., 2000, vol. 35, pp. 3105-11.

    Article  Google Scholar 

  4. A.J. Chang, S.W. Rhee, S.G. Baik: J. Am. Ceram. Soc., 1995, vol. 78, pp. 33-40.

    Article  Google Scholar 

  5. http://kinetics.nist.gov/janaf/. Accessed 31 Oct 2014.

  6. Q. Zheng, B. Wu, R.G. Reddy: Adv. Eng. Mater., 2003, vol. 5, pp. 167-72.

    Article  Google Scholar 

  7. A.V. Korshunov: Russ. J. Phys. Chem A,2011, vol. 85, pp.1202-10.

    Article  Google Scholar 

  8. T. Okada, M. Toriyama, S. Kanzaki: J. Eur. Ceram. Soc., 2000, vol. 20, pp. 783-87.

    Article  Google Scholar 

  9. N. Hotta, I. Kimura, K. Ichiya, N. Saito, S. Yasukawa, K. Tada, T. Kitamura: J. Ceram. Soc. Jpn., 1988, vol. 96, pp. 731-35.

    Article  Google Scholar 

  10. G.B. Schaffer, B.J. Hall: Metall. Mater. Trans. A, 2002, vol. 33, pp. 3279-84.

    Article  Google Scholar 

  11. R.N. Lumley, T.B. Sercombe, G.B. Schaffer: Metall. Mater. Trans. A, 1999, vol. 30, pp. 457-63.

    Article  Google Scholar 

  12. V. Laurent, D. Chatain, C. Chatillon, N. Eustathopoulos: Acta Metall. Mater., 1988, vol. 36, pp. 1797-803.

    Article  Google Scholar 

  13. D. Kent, J. Drennan, G.B. Schaffer: Acta Mater., 2011, vol. 59, pp. 2469-80.

    Article  Google Scholar 

  14. T.B. Sercombe, G.B. Schaffer: Acta Mater., 2004, vol. 52, pp. 3019-25.

    Article  Google Scholar 

  15. B.S. Rao, V. Jayaram: Acta Mater., 2001, vol. 49, pp. 2373-85.

    Article  Google Scholar 

  16. H. Scholz, P. Greil: J. Mater. Sci., 1991, vol. 26, pp. 669-77.

    Article  Google Scholar 

  17. Q. Zheng, R.G. Reddy: J. Mater. Sci., 2004, vol. 39, pp. 141-9.

    Article  Google Scholar 

  18. Q. Hou, R. Mutharasan, M. Koczak: Mater. Sci. Eng. A, 1995, vol. 195, pp. 121-9.

    Article  Google Scholar 

  19. G.B. Schaffer, P.G. Mccormick: Metall. Trans. A, 1990, vol. 21, pp. 2789-94.

    Article  Google Scholar 

  20. JCPDS-ICDD Cards No 78-0298, International Centre for Diffraction Data, Newtown Square, PA, 1996.

  21. M. MacKenzie, A.J. Craven: J. Phys. D Appl. Phys., 2000, vol. 33, pp. 1647-55.

    Article  Google Scholar 

  22. V. Serin, C. Colliex, R. Brydson, S. Matar, F. Boucher: Phys. Rev. B, 1998, vol. 58(8), pp. 5106-15.

    Article  Google Scholar 

  23. P.B. Guillemaud, G. Radtke, M. Sennour: J. Microsc., 2003, vol. 210, pp. 66-73.

    Article  Google Scholar 

  24. S.P. Gao, A. Zhang, J. Zhu, J. Yuan: Appl. Phys. Lett., 2004, vol. 84, pp. 2784-86.

    Article  Google Scholar 

  25. G. Radtke, T. Epicier, P.B. Guillemaud, J.C.L. Bosse: J. Microsc., 2003, vol. 210, pp. 60-5.

    Article  Google Scholar 

  26. K.L. Jablonska, T. Suski, I. Gorczyca, N.E. Christensen, R.C.C. Perera, E.M. Gullikson, J.H. Underwood, D.L. Ederer, and Z.L. Weber: Phys. Rev. B, 2000, vol. 61(24), pp. 16623-32.

  27. C. Toy, W.D. Scott: J. Mater. Sci., 1997, vol. 32, pp. 3243-48.

    Article  Google Scholar 

  28. P. Lefort, M. Billy: J. Am. Ceram. Soc., 1993, vol. 76, pp. 2295-9.

    Article  Google Scholar 

  29. Y. Qiu, L. Gao: J. Eur. Ceram. Soc., 2003, vol. 23, pp. 2015-22.

    Article  Google Scholar 

  30. G.R. Prin, T. Baffie, M. Jeymond, N. Eustathopoulos: Mater. Sci. Eng. A, 2001, vol. 298, pp. 34-43.

    Article  Google Scholar 

  31. J.W. McCauley: US Army Research Laboratory report ARL-TR-2740, 2002.

  32. X. Wang, W. Li, S. Seetharaman: Scand. J. Metall., 2002, vol. 31, pp. 1-6.

    Article  Google Scholar 

  33. N. Eustathopoulos, J.C. Joud, P. Desre, J.M. Hicter: J. Mater. Sci., 1974, vol. 9, pp. 1233-42.

    Article  Google Scholar 

  34. W.D. Callister and D.G. Rethwisch: Materials Science and Engineering: An Introduction, 8th ed., John Wiley and Sons Inc.(Asia), Singapore, 2013.

Download references

Acknowledgments

This work was supported by a grant from the Fundamental R&D Program for Core Technology of Materials (10037309, Metal matrix composites by gas reaction control) funded by the Ministry of Knowledge Economy, Republic of Korea and the Priority Research Centers Program through the National Research Foundation of Korea funded by the Ministry of Education, Science, and Technology (2012-0006680) and the Leading Foreign Research Institute Recruitment Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning(MSIP) (2013K1A4A3055679)), and University of Incheon (International Cooperative) Research Grant in 2012.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jae-Pyoung Ahn, Heang Ryeal Yang or Kon-Bae Lee.

Additional information

Manuscript submitted March 22, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, SH., Noh, JH., Ahn, JP. et al. Effects of Surface Oxide on the Nitridation Behavior of Aluminum Particles. Metall Mater Trans A 46, 496–504 (2015). https://doi.org/10.1007/s11661-014-2604-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2604-7

Keywords

Navigation