Skip to main content
Log in

Impact of fullerene loading on the structure and transport properties of polysulfone mixed-matrix membranes

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Novel mixed-matrix membranes based on polysulfone (PS) and fullerene C60 (up to 5 wt%) have been developed. Two membrane types formed from PS and PS-C60, a dense (diffusive) membrane and a supported membrane, consisted of a thin PS or PS-C60 selective layer (≈5 μm) on the surface of hydrophobic fluorocarbon polymer porous support (MFFC) were studied. The effect of fullerene incorporation on the structure and physical and chemical properties of PS membranes were investigated by scanning electron microscopy, nuclear magnetic resonance, contact angle measurements, sorption experiments, and wide-angle X-ray diffraction. The transport properties of the mixed matrix membranes containing up to 0.5 wt% fullerene were studied for the pervaporation of ethyl acetate–water mixture. The new mixed-matrix membranes, developed in this study, were selective to water, whereas the PS-0.5 % C60/MFFC composite membrane was found to have the best performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Goh PS, Ismail AF (2015) Review: is interplay between nanomaterial and membrane technology the way forward for desalination? J Chem Technol Biotechnol 90:971–980. doi:10.1002/jctb.4531

    Article  Google Scholar 

  2. Goh PS, Ismail AF, Sanip SM et al (2011) Recent advances of inorganic fillers in mixed matrix membrane for gas separation. Sep Purif Technol 81:243–264. doi:10.1016/j.seppur.2011.07.042

    Article  Google Scholar 

  3. Hoek EMV, Ghosh AK, Huang X et al (2011) Physical-chemical properties, separation performance, and fouling resistance of mixed-matrix ultrafiltration membranes. Desalination 283:89–99. doi:10.1016/j.desal.2011.04.008

    Article  Google Scholar 

  4. Yu J, Li L, Liu N, Lee R (2013) An approach to prepare defect-free PES/MFI-type zeolite mixed matrix membranes for CO2/N2 separation. J Mater Sci 48:3782–3788. doi:10.1007/s10853-013-7178-z

    Article  Google Scholar 

  5. Garca MG, Marchese J, Ochoa NA (2012) High activated carbon loading mixed matrix membranes for gas separations. J Mater Sci 47:3064–3075. doi:10.1007/s10853-011-6138-8

    Article  Google Scholar 

  6. Diallo MS, Duncan JS, Savage N et al (2014) Nanotechnology solutions for improving water quality. solutions for improving water quality a volume in micro and nano technologies. Nanotechnol Appl Clean Water. doi:10.1016/B978-1-4557-3116-9.00042-1

    Google Scholar 

  7. Cheryan M (1998) Ultrafiltration and microfiltration handbook. CRC press, Boca Raton

    Google Scholar 

  8. Chakrabarty B, Ak Ghoshal, Purkait MK (2008) SEM analysis and gas permeability test to characterize polysulfone membrane prepared with polyethylene glycol as additive. J Colloid Interface Sci 320:245–253. doi:10.1016/j.jcis.2008.01.002

    Article  Google Scholar 

  9. Ohya H, Shiki S, Kawakami H (2009) Fabrication study of polysulfone hollow-fiber microfiltration membranes: optimal dope viscosity for nucleation and growth. J Memb Sci 326:293–302. doi:10.1016/j.memsci.2008.10.001

    Article  Google Scholar 

  10. Chen SH, Liou RM, Lai CL et al (2008) Embedded nano-iron polysulfone membrane for dehydration of the ethanol/water mixtures by pervaporation. Desalination 234:221–231. doi:10.1016/j.desal.2007.09.089

    Article  Google Scholar 

  11. Hunger K, Schmeling N, Jeazet HBT et al (2012) Investigation of cross-linked and additive containing polymer materials for membranes with improved performance in pervaporation and gas separation. Membranes 2:727–763. doi:10.3390/membranes2040727 (Basel)

    Article  Google Scholar 

  12. Ismail AF, Goh PS, Sanip SM, Aziz M (2009) Transport and separation properties of carbon nanotube-mixed matrix membrane. Sep Purif Technol 70:12–26. doi:10.1016/j.seppur.2009.09.002

    Article  Google Scholar 

  13. Wang N, Ji S, Li J et al (2014) Poly(vinyl alcohol)-graphene oxide nanohybrid “pore-filling” membrane for pervaporation of toluene/n-heptane mixtures. J Memb Sci 455:113–120. doi:10.1016/j.memsci.2013.12.023

    Article  Google Scholar 

  14. Wang T, Shen J-N, Wu L-G, Bruggen BVD (2014) Improvement in the permeation performance of hybrid membranes by the incorporation of functional multi-walled carbon nanotubes. J Memb Sci 466:338–347. doi:10.1016/j.memsci.2014.04.054

    Article  Google Scholar 

  15. Yeang QW, Zein SHS, Sulong AB, Tan SH (2013) Comparison of the pervaporation performance of various types of carbon nanotube-based nanocomposites in the dehydration of acetone. Sep Purif Technol 107:252–263. doi:10.1016/j.seppur.2013.01.031

    Article  Google Scholar 

  16. Polotskaya GA, Penkova AV, Toikka AM et al (2007) Transport of small molecules through polyphenylene oxide membranes modified by fullerene. Sep Sci Technol 42:333–347. doi:10.1080/01496390600997963

    Article  Google Scholar 

  17. Jin X, Hu JY, Tint ML et al (2007) Estrogenic compounds removal by fullerene-containing membranes. Desalination 214:83–90. doi:10.1016/j.desal.2006.10.019

    Article  Google Scholar 

  18. Sudareva NN, Penkova AV, Kostereva TA et al (2012) Properties of casting solutions and ultrafiltration membranes based on fullerene-polyamide nanocomposites. Expr Polym Lett 6:178–188. doi:10.3144/expresspolymlett.2012.20

    Article  Google Scholar 

  19. Polotskaya GA, Penkova AV, Pientka Z, Am Toikka (2012) Polymer membranes modified by fullerene C60 for pervaporation of organic mixtures. Desalin Water Treat 14:83–88. doi:10.5004/dwt.2010.1528

    Article  Google Scholar 

  20. Taurozzi JS, Crock CA, Tarabara VV (2011) C60-polysulfone nanocomposite membranes: entropic and enthalpic determinants of C60 aggregation and its effects on membrane properties. Desalination 269:111–119. doi:10.1016/j.desal.2010.10.049

    Article  Google Scholar 

  21. Martin JW (2006) Concise encyclopedia of the structure of materials. Elsevier, Philadelphia

    Google Scholar 

  22. Stephens PW (1994) Physics and chemistry of fullerenes. World Scientific, Singapore

    Google Scholar 

Download references

Acknowledgements

The authors are grateful and acknowledge Grants from RFBR No. 15-58-04034 (A.V. Penkova); Grants from St. Petersburg State University (No. 12.50.1195.2014 (M.P. Sokolova), 12.42.1392.2015 (M.E. Dmitrenko); the Government of the Russian Federation Grant 074-U01 (D.A. Markelov). The experimental work was facilitated on the equipment of the Resource Center of X-ray diffraction studies and GEOMODEL, Interdisciplinary Resource center for Nanotechnology at St. Petersburg State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasia V. Penkova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Penkova, A.V., Dmitrenko, M.E., Sokolova, M.P. et al. Impact of fullerene loading on the structure and transport properties of polysulfone mixed-matrix membranes. J Mater Sci 51, 7652–7659 (2016). https://doi.org/10.1007/s10853-016-0047-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-0047-9

Keywords

Navigation