Skip to main content
Log in

Creep behavior of nanocrystalline Au films as a function of temperature

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Freestanding nanocrystalline Au films, subjected to nominally elastic loads at 25–110 °C, demonstrated high primary (10−7–10−4 s−1) and steady-state creep rates (10−8–10−5 s−1). The deformation mechanisms for creep were strongly temperature dependent: grain boundary sliding-based creep dominated at room temperature and 50 °C, while the contribution of dislocation-mediated creep increased at 80 and 110 °C. The effect of applied stress on primary and steady-state creep strain at different temperatures was captured well by a non-linear model that was based on the kinetics of thermal activation. Multi-cycle creep experiments showed that at room temperature virtually all the primary strain accumulated during each forward creep cycle was recovered upon complete unloading. As the contribution of dislocation-mediated creep increased with temperature, the ratio of strain recovery to primary strain accumulated during each cycle was reduced due to the accumulation of plastic strain at higher temperatures. Notably, at all temperatures, the steady-state creep rate decreased after the first creep cycle. Moreover, the entire creep response remained virtually unchanged in all subsequent cycles, which implies that the first creep cycle resulted in mechanical annealing. This conclusion was further supported by calculations of the activation entropy: A reduction in its magnitude between the first and all subsequent creep cycles at all temperatures pointed out to mechanical annealing of initial material defects during the first loading cycle. The negative values of the calculated activation entropy indicated that entropy changes due to annihilation of defects-dominated entropy changes associated with the generation of new defects. Finally, the activation entropy for steady-state creep was temperature insensitive, but increased with stress, which is consistent with an increase in defect generation at higher stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Hsu H, Peroulis D (2010) A viscoelastic-aware experimentally-derived model for analog RF MEMS varactors. In: 2010 IEEE 23rd international conference micro electro mechanical systems, pp 783–786

  2. Jonnalagadda KN, Chasiotis I, Yagnamurthy S et al (2010) Experimental investigation of strain rate dependence of nanocrystalline Pt films. Exp Mech 50:25–35

    Article  Google Scholar 

  3. Meyers M, Mishra A, Benson D (2006) Mechanical properties of nanocrystalline materials. Prog Mater Sci 51:427–556

    Article  Google Scholar 

  4. Kumar K, Van Swygenhoven H, Suresh S (2003) Mechanical behavior of nanocrystalline metals and alloys. Acta Mater 51:5743–5774

    Article  Google Scholar 

  5. Chasiotis I, Bateson C, Timpano K et al (2007) Strain rate effects on the mechanical behavior of nanocrystalline Au films. Thin Solid Films 515:3183–3189

    Article  Google Scholar 

  6. Wei Q, Cheng S, Ramesh K, Ma E (2004) Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: fcc versus bcc metals. Mater Sci Eng A 381:71–79

    Article  Google Scholar 

  7. Emery R (2003) Tensile behavior of free-standing gold films. Part II. Fine-grained films. Acta Mater 51:2079–2087

    Article  Google Scholar 

  8. Wang L, Prorok BCCB (2008) Characterization of the strain rate dependent behavior of nanocrystalline gold films. J Mater Res 23:55–65

    Article  Google Scholar 

  9. Jonnalagadda K, Karanjgaokar N, Chasiotis I et al (2010) Strain rate sensitivity of nanocrystalline Au films at room temperature. Acta Mater 58:4674–4684

    Article  Google Scholar 

  10. Wei Y, Bower AF, Gao H (2008) Enhanced strain-rate sensitivity in fcc nanocrystals due to grain-boundary diffusion and sliding. Acta Mater 56:1741–1752

    Article  Google Scholar 

  11. Padilla HA, Boyce BL (2010) A review of fatigue behavior in nanocrystalline metals. Exp Mech 50:5–23

    Article  Google Scholar 

  12. Yamakov V, Wolf D, Salazar M et al (2001) Length-scale effects in the nucleation of extended dislocations in nanocrystalline Al by molecular-dynamics simulation. Acta Mater 49:2713–2722

    Article  Google Scholar 

  13. Li JCM (1960) The interaction of parallel edge dislocations with a simple tilt dislocation wall. Acta Metall 8:296–311

    Article  Google Scholar 

  14. Coble RL (1963) A model for boundary diffusion controlled creep in polycrystalline materials. J Appl Phys 34:1679

    Article  Google Scholar 

  15. Ashby M, Verrall R (1973) Diffusion-accommodated flow and superplasticity. Acta Metall 21:149–163

    Article  Google Scholar 

  16. Gifkins RC, Snowden KU (1966) Mechanism for “Viscous” grain-boundary sliding. Nature 212:916–917

    Article  Google Scholar 

  17. Budke E, Herzig C, Prokofjev SI, Shvindlerman LS (1998) Study of grain-boundary diffusion of Au in copper within ∑5 misorientation range in the context of structure of grain boundaries. Defect Diffus Forum 156:21–34

    Article  Google Scholar 

  18. Kumar K, Suresh S, Chisholm M, Horton J (2003) Deformation of electrodeposited nanocrystalline nickel. Acta Mater 51:387–405

    Article  Google Scholar 

  19. Cai B, Kong Q, Lu L, Lu K (2000) Low temperature creep of nanocrystalline pure copper. Mater Sci Eng A 286:188–192

    Article  Google Scholar 

  20. Raj R, Ashby MF (1971) On grain boundary sliding and diffusional creep. Metall Trans 2:1113–1127

    Article  Google Scholar 

  21. Harris K, King A (1998) Direct observation of diffusional creep via TEM in polycrystalline thin films of gold. Acta Mater 46:6195–6203

    Article  Google Scholar 

  22. Wang N, Wang Z, Aust K, Erb U (1997) Room temperature creep behavior of nanocrystalline nickel produced by an electrodeposition technique. Mater Sci Eng A 237:150–158

    Article  Google Scholar 

  23. Cai B (2001) Creep behavior of cold-rolled nanocrystalline pure copper. Scr Mater 45:1407–1413

    Article  Google Scholar 

  24. Yagi N, Rikukawa A, Mizubayashi H, Tanimoto H (2006) Experimental tests of the elementary mechanism responsible for creep deformation in nanocrystalline gold. Phys Rev B 74:144105

    Article  Google Scholar 

  25. Langdon TG (1970) Grain boundary sliding as a deformation mechanism during creep. Philos Mag 22:689–700

    Article  Google Scholar 

  26. Wang Y-J, Ishii A, Ogata S (2011) Transition of creep mechanism in nanocrystalline metals. Phys Rev B 84:1–7

    Google Scholar 

  27. Nabarro FRN (1948) Deformation of crystals by the motion of single ions. In: Report of a conference on the strength of solids, Phys. Soc. London, pp 75–90

  28. Herring C (1950) Diffusional viscosity of a polycrystalline solid. J Appl Phys 21:437–445

    Article  Google Scholar 

  29. Chokshi AH, Rosen A, Karch J, Gleiter H (1989) On the validity of the Hall-Petch relationship in nanocrystalline materials. Scr Metall 23:1679–1683

    Article  Google Scholar 

  30. Fougere GE, Weertman JR, Siegel RW, Kim S (1992) Grain-size dependent hardening and softening of nanocrystalline Cu and Pd. Scr Metall Mater 26:1879–1883

    Article  Google Scholar 

  31. Arzt E (1998) Size effects in materials due to microstructural and dimensional constraints: a comparative review. Acta Mater 46:5611–5626

    Article  Google Scholar 

  32. Espinosa H, Prorok B (2003) Size effects on the mechanical behavior of gold thin films. J Mater Sci 38:4125–4128. doi:10.1023/A:1026321404286

    Article  Google Scholar 

  33. Yan X, Brown WL, Li Y et al (2009) Anelastic stress relaxation in gold films and its impact on restoring forces in MEMS devices. J Microelectromech Syst 18:570–576

    Article  Google Scholar 

  34. Karanjgaokar NJ, Oh C-S, Lambros J, Chasiotis I (2012) Inelastic deformation of nanocrystalline Au thin films as a function of temperature and strain rate. Acta Mater 60:5352–5361

    Article  Google Scholar 

  35. Sim G-D, Vlassak JJ (2014) High-temperature tensile behavior of freestanding Au thin films. Scr Mater 75:34–37

    Article  Google Scholar 

  36. Wang C, Zhang M, Nieh T (2009) Nanoindentation creep of nanocrystalline nickel at elevated temperatures. J Phys D Appl 42:115405

    Article  Google Scholar 

  37. Chang S, Lee Y, Chang T (2006) Nanomechanical response and creep behavior of electroless deposited copper films under nanoindentation test. Mater Sci Eng A 423:52–56

    Article  Google Scholar 

  38. Bhakhri V, Klassen R (2006) The depth dependence of the indentation creep of polycrystalline gold at 300K. Scr Mater 55:395–398

    Article  Google Scholar 

  39. Hyun S, Brown WL, Vinci RP (2003) Thickness and temperature dependence of stress relaxation in nanoscale aluminum films. Appl Phys Lett 83:4411–4413

    Article  Google Scholar 

  40. Kalkman AJ, Verbruggen AH, Janssen GCAM, Radelaar S (2002) Transient creep in free-standing thin polycrystalline aluminum films. J Appl Phys 92:4968

    Article  Google Scholar 

  41. Merle B, Cassel D, Goken M (2015) Time-dependent deformation behavior of freestanding and SiNx -supported gold thin films investigated by bulge tests. J Mater Res 30:2161–2169

    Article  Google Scholar 

  42. Brotzen F, Rosenmayer C, Cofer C, Gale R (1990) Creep of thin metallic films. Vacuum 41:1287–1290

    Article  Google Scholar 

  43. Guo NN, Zhang JY, Cheng PM et al (2013) Room temperature creep behavior of free-standing Cu films with bimodal grain size distribution. Scr Mater 68:849–852

    Article  Google Scholar 

  44. Wang B, Idrissi H, Galceran M, Colla MS, Turner S, Hui S, Raskin JP, Pardoen T, Godet S, Schryvers D (2012) Advanced TEM investigation of the plasticity mechanisms in nanocrystalline freestanding palladium films with nanoscale twins. Int J Plast 37:140–156

    Article  Google Scholar 

  45. Zhang K, Weertman JR, Eastman JA (2004) The influence of time, temperature, and grain size on indentation creep in high-purity nanocrystalline and ultrafine grain copper. Appl Phys Lett 85:5197–5199

    Article  Google Scholar 

  46. Liu Y, Huang C, Bei H et al (2012) Room temperature nanoindentation creep of nanocrystalline Cu and Cu alloys. Mater Lett 70:26–29

    Article  Google Scholar 

  47. Tanimoto H, Sakai S, Mizubayashi H (2004) Anelasticity of nanocrystalline metals. Mater Sci Eng A 370:135–141

    Article  Google Scholar 

  48. Wang CL, Lai YH, Huang JC, Nieh TG (2010) Creep of nanocrystalline nickel: a direct comparison between uniaxial and nanoindentation creep. Scr Mater 62:175–178

    Article  Google Scholar 

  49. Gollapudi S, Rajulapati KV, Charit I et al (2010) Creep in nanocrystalline materials: role of stress assisted grain growth. Mater Sci Eng A 527:5773–5781

    Article  Google Scholar 

  50. Yin WM, Whang SHH (2005) The creep and fracture in nanostructured metals and alloys. JOM J Miner Met Mater Soc 57:63–70

    Article  Google Scholar 

  51. Karanjgaokar N, Stump F, Geubelle P, Chasiotis I (2013) A thermally activated model for room temperature creep in nanocrystalline Au films at intermediate stresses. Scr Mater 68:551–554

    Article  Google Scholar 

  52. Karanjgaokar NJ, Oh C, Chasiotis I (2010) Microscale experiments at elevated temperatures evaluated with digital image correlation. Exp Mech 51:609–618

    Article  Google Scholar 

  53. Hertzberg RW, Vinci RP, Hertzberg JL (2012) Deformation and fracture mechanics of engineering materials, 5th edn. Wiley, New York

    Google Scholar 

  54. Blum W, Li Y (2007) Flow stress and creep rate of nanocrystalline Ni. Scr Mater 57:429–431

    Article  Google Scholar 

  55. Kottada RS, Chokshi AH (2005) Low temperature compressive creep in electrodeposited nanocrystalline nickel. Scr Mater 53:887–892

    Article  Google Scholar 

  56. McLean M, Brown WL, Vinci RP (2010) Temperature-dependent viscoelasticity in thin Au films and consequences for MEMS devices. J Microelectromech Syst 19:1299–1308

    Article  Google Scholar 

  57. Wang B, Haque MA (2014) Low temperature viscoelasticity in nanocrystalline nickel films. Mater Lett 118:59–61

    Article  Google Scholar 

  58. Shan ZW, Mishra RK, Syed Asif SA et al (2008) Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. Nat Mater 7:115–119

    Article  Google Scholar 

  59. Rajagopalan J, Han JH, Saif MT (2007) Plastic deformation recovery in freestanding nanocrystalline aluminum and gold thin films. Science 315:1831–1834

    Article  Google Scholar 

  60. Rajagopalan J, Han JH, Saif MT (2008) On plastic strain recovery in freestanding nanocrystalline metal thin films. Scr Mater 59:921–926

    Article  Google Scholar 

  61. Jennings AT, Gross C, Greer F, Aitken ZH, Lee S-W, Weinberger CR, Greer JR (2012) Higher compressive strengths and the Bauschinger effect in conformally passivated copper nanopillars. Acta Mater 60:3444–3455

    Article  Google Scholar 

  62. Bernal RA, Aghaei A, Lee S et al (2015) Intrinsic Bauschinger effect and recoverable plasticity in pentatwinned silver nanowires tested in tension. Nano Lett 15:139–146

    Article  Google Scholar 

  63. Xiang X, Vlassak JJ (2006) Bauschinger and size effects in thin-film plasticity. Acta Mater 54:5449–5460

    Article  Google Scholar 

  64. Wei X, Kysar JW (2011) Residual plastic strain recovery driven by grain boundary diffusion in nanocrystalline thin films. Acta Mater 59:3937–3945

    Article  Google Scholar 

  65. Wei Y, Bower AF, Gao H (2007) Recoverable creep deformation due to heterogeneous grain-boundary diffusion and sliding. Scr Mater 57:933–936

    Article  Google Scholar 

  66. Wei Y, Bower AF, Gao H (2008) Recoverable creep deformation and transient local stress concentration due to heterogeneous grain-boundary diffusion and sliding in polycrystalline solids. J Mech Phys Solids 56:1460–1483

    Article  Google Scholar 

  67. Davoudi KM, Nicola L, Vlassak JJ (2014) Bauschinger effect in thin metal films: discrete dislocation dynamics study. J Appl Phys 115:013507

    Article  Google Scholar 

  68. Dushman S, Dunbar LW, Huthsteiner H (1944) Creep of Metals. J Appl Phys 15:108

    Article  Google Scholar 

  69. Wang YJ, Ishii A, Ogata S (2013) Entropic effect on creep in nanocrystalline metals. Acta Mater 61:3866–3871

    Article  Google Scholar 

  70. Gupta D (1973) Grain-boundary self-diffusion in Au by Ar sputtering technique. J Appl Phys 44:4455

    Article  Google Scholar 

  71. Lin T-S, Chung Y-W (1989) Measurement of the activation energy for surface diffusion in gold by scanning tunneling microscopy. Surf Sci 207:539–546

    Article  Google Scholar 

  72. Makin SM, Rowe AH, Leclaire AD (1957) Self-diffusion in gold. Proc Phys Soc Sect B 70:545–552

    Article  Google Scholar 

  73. Wang YJ, Gao GJJ, Ogata S (2013) Atomistic understanding of diffusion kinetics in nanocrystals from molecular dynamics simulations. Phys Rev B 88:1–7

    Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge the support by the National Science Foundation under Grant CMMI#0927149 ARRA. The authors would like to thank Prof. Dimitrios Peroulis and his group from Purdue University for providing the Au films for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikhil Karanjgaokar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karanjgaokar, N., Chasiotis, I. Creep behavior of nanocrystalline Au films as a function of temperature. J Mater Sci 51, 3701–3714 (2016). https://doi.org/10.1007/s10853-015-9687-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9687-4

Keywords

Navigation