Skip to main content
Log in

Flexible electronics under strain: a review of mechanical characterization and durability enhancement strategies

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Flexible electronics incorporate all the functional attributes of conventional rigid electronics in formats that have been altered to survive mechanical deformations. Understanding the evolution of device performance during bending, stretching, or other mechanical cycling is, therefore, fundamental to research efforts in this area. Here, we review the various classes of flexible electronic devices (including power sources, sensors, circuits and individual components) and describe the basic principles of device mechanics. We then review techniques to characterize the deformation tolerance and durability of these flexible devices, and we catalogue and geometric designs that are intended to optimize electronic systems for maximum flexibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mannsfeld SCB, Tee BCK, Stoltenberg RM, Chen CVHH, Barman S, Muir BVO, Sokolov AN, Reese C, Bao ZN (2010) Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat Mater 9:859–864

    Article  Google Scholar 

  2. Dagdeviren C, Yang BD, Su YW, Tran PL, Joe P, Anderson E, Xia J, Doraiswamy V, Dehdashti B, Feng X, Lu BW, Poston R, Khalpey Z, Ghaffari R, Huang YG, Slepian MJ, Rogers JA (2014) Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm. Proc Natl Acad Sci 111:1927–1932

    Article  Google Scholar 

  3. Kim RH, Kim DH, Xiao JL, Kim BH, Park SI, Panilaitis B, Ghaffari R, Yao JM, Li M, Liu ZJ, Malyarchuk V, Kim DG, Le AP, Nuzzo RG, Kaplan DL, Omenetto FG, Huang YG, Kang Z, Rogers JA (2010) Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics. Nat Mater 9:929–937

    Article  Google Scholar 

  4. Xu S, Zhang YH, Jia L, Mathewson KE, Jang KI, Kim J, Fu HR, Huang X, Chava P, Wang RH, Bhole S, Wang LZ, Na YJ, Guan Y, Flavin M, Han ZS, Huang YG, Rogers JA (2014) Soft microfluidic assemblies of sensors, circuits, and radios for the skin. Science 344:70–74

    Article  Google Scholar 

  5. Cheng T, Zhang Y, Lai W-Y, Huang W (2015) Stretchable thin-film electrodes for flexible electronics with high deformability and stretchability. Adv Mater 27:3349–3376

    Article  Google Scholar 

  6. Park S, Vosguerichian M, Bao ZA (2013) A review of fabrication and applications of carbon nanotube film-based flexible electronics. Nanoscale 5:1727–1752

    Article  Google Scholar 

  7. Perelaer J, Smith PJ, Mager D, Soltman D, Volkman SK, Subramanian V, Korvink JG, Schubert US (2010) Printed electronics: the challenges involved in printing devices, interconnects, and contacts based on inorganic materials. J Mater Chem 20:8446–8453

    Article  Google Scholar 

  8. Huang D, Liao F, Molesa S, Redinger D, Subramanian V (2003) Plastic-compatible low resistance printable gold nanoparticle conductors for flexible electronics. J Electrochem Soc 150:G412–G417

    Article  Google Scholar 

  9. Lipomi DJ, Bao ZA (2011) Stretchable, elastic materials and devices for solar energy conversion. Energy Environ Sci 4:3314–3328

    Article  Google Scholar 

  10. Sekitani T, Someya T (2010) Stretchable, large-area organic electronics. Adv Mater 22:2228–2246

    Article  Google Scholar 

  11. Benight SJ, Wang C, Tok JBH, Bao ZA (2013) Stretchable and self-healing polymers and devices for electronic skin. Prog Polym Sci 38:1961–1977

    Article  Google Scholar 

  12. Xiang Y, Li T, Suo ZG, Vlassak JJ (2005) High ductility of a metal film adherent on a polymer substrate. Appl Phys Lett 87:161910

    Article  Google Scholar 

  13. Li T, Suo Z (2006) Deformability of thin metal films on elastomer substrates. Int J Solids Struct 43:2351–2363

    Article  Google Scholar 

  14. Wagner S, Bauer S (2012) Materials for stretchable electronics. MRS Bull 37:207–217

    Article  Google Scholar 

  15. Zhu S, So JH, Mays R, Desai S, Barnes WR, Pourdeyhimi B, Dickey MD (2013) Ultrastretchable fibers with metallic conductivity using a liquid metal alloy core. Adv Funct Mater 23:2308–2314

    Article  Google Scholar 

  16. Park J, Wang SD, Li M, Ahn C, Hyun JK, Kim DS, Kim DK, Rogers JA, Huang YG, Jeon S (2012) Three-dimensional nanonetworks for giant stretchability in dielectrics and conductors. Nat Commun 3:916

    Article  Google Scholar 

  17. Cheng S, Wu ZG (2011) A microfluidic, reversibly stretchable, large-area wireless strain sensor. Adv Funct Mater 21:2282–2290

    Article  Google Scholar 

  18. Kubo M, Li XF, Kim C, Hashimoto M, Wiley BJ, Ham D, Whitesides GM (2010) Stretchable microfluidic radiofrequency antennas. Adv Mater 22:2749–2752

    Article  Google Scholar 

  19. Cheng S, Wu ZG (2012) Microfluidic electronics. Lab Chip 12:2782–2791

    Article  Google Scholar 

  20. Baca AJ, Ahn JH, Sun YG, Meitl MA, Menard E, Kim HS, Choi WM, Kim DH, Huang Y, Rogers JA (2008) Semiconductor wires and ribbons for high-performance flexible electronics. Angew Chem Int Ed 47:5524–5542

    Article  Google Scholar 

  21. Long YZ, Yu M, Sun B, Gu CZ, Fan ZY (2012) Recent advances in large-scale assembly of semiconducting inorganic nanowires and nanofibers for electronics, sensors and photovoltaics. Chem Soc Rev 41:4560–4580

    Article  Google Scholar 

  22. Liu X, Long YZ, Liao L, Duan XF, Fan ZY (2012) Large-scale integration of semiconductor nanowires for high-performance flexible electronics. ACS Nano 6:1888–1900

    Article  Google Scholar 

  23. Wu JH, Zang JF, Rathmell AR, Zhao XH, Wiley BJ (2013) Reversible sliding in networks of nanowires. Nano Lett 13:2381–2386

    Article  Google Scholar 

  24. Sun DM, Liu C, Ren WC, Cheng HM (2013) A review of carbon nanotube- and graphene-based flexible thin-film transistors. Small 9:1188–1205

    Article  Google Scholar 

  25. Hecht DS, Hu LB, Irvin G (2011) Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv Mater 23:1482–1513

    Article  Google Scholar 

  26. Hu LB, Kim HS, Lee JY, Peumans P, Cui Y (2010) Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano 4:2955–2963

    Article  Google Scholar 

  27. Lee JY, Connor ST, Cui Y, Peumans P (2008) Solution-processed metal nanowire mesh transparent electrodes. Nano Lett 8:689–692

    Article  Google Scholar 

  28. Rathmell AR, Bergin SM, Hua YL, Li ZY, Wiley BJ (2010) The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films. Adv Mater 22:3558–3563

    Article  Google Scholar 

  29. Yao SS, Zhu Y (2015) Nanomaterial-enabled stretchable conductors: strategies, materials and devices. Adv Mater 27:1480–1511

    Article  Google Scholar 

  30. Huang JC (2002) Carbon black filled conducting polymers and polymer blends. Adv Polym Technol 21:299–313

    Article  Google Scholar 

  31. Strumpler R, Glatz-Reichenbach J (1999) Conducting polymer composites. J Electroceram 3:329–346

    Article  Google Scholar 

  32. Zhang W, Dehghani-Sanij AA, Blackburn RS (2007) Carbon based conductive polymer composites. J Mater Sci 42:3408–3418. doi:10.1007/s10853-007-1688-5

    Article  Google Scholar 

  33. Nyholm L, Nystrom G, Mihranyan A, Stromme M (2011) Toward flexible polymer and paper-based energy storage devices. Adv Mater 23:3751–3769

    Google Scholar 

  34. Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196:1–12

    Article  Google Scholar 

  35. Bhadra S, Khastgir D, Singha NK, Lee JH (2009) Progress in preparation, processing and applications of polyaniline. Prog Polym Sci 34:783–810

    Article  Google Scholar 

  36. Halpin JC (1969) Stiffness and expansion estimates for oriented short fiber composites. J Compos Mater 3:732–734

    Google Scholar 

  37. Rafiee MA, Rafiee J, Wang Z, Song HH, Yu ZZ, Koratkar N (2009) Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3:3884–3890

    Article  Google Scholar 

  38. Horowitz G (2006) Organic transistors. In: Klauk H (ed) Organic electronics, materials, manufacturing and applications. Wiley-VCH, Weinheim, pp 3–32

    Google Scholar 

  39. Savagatrup S, Printz AD, O’Connor TF, Zaretski AV, Lipomi DJ (2014) Molecularly stretchable electronics. Chem Mater 26:3028–3041

    Article  Google Scholar 

  40. Heeger AJ (2001) Nobel lecture: semiconducting and metallic polymers: the fourth generation of polymeric materials. Rev Mod Phys 73:681–700

    Article  Google Scholar 

  41. Elschner A, Kirchmeyer S, Lovenich W, Merker U, Reuter K (2011) PEDOT: principles and applications of an intrinsically conductive polymer. CRC Press, New York

    Google Scholar 

  42. Weiss NO, Zhou HL, Liao L, Liu Y, Jiang S, Huang Y, Duan XF (2012) Graphene: an emerging electronic material. Adv Mater 24:5782–5825

    Article  Google Scholar 

  43. Lee C, Wei XD, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388

    Article  Google Scholar 

  44. Kang J, Shin D, Bae S, Hong BH (2012) Graphene transfer: key for applications. Nanoscale 4:5527–5537

    Article  Google Scholar 

  45. Torrisi F, Hasan T, Wu WP, Sun ZP, Lombardo A, Kulmala TS, Hsieh GW, Jung SJ, Bonaccorso F, Paul PJ, Chu DP, Ferrari AC (2012) Inkjet-printed graphene electronics. ACS Nano 6:2992–3006

    Article  Google Scholar 

  46. Sun YG, Rogers JA (2007) Inorganic semiconductors for flexible electronics. Adv Mater 19:1897–1916

    Article  Google Scholar 

  47. Guillen C, Herrero J (2011) TCO/metal/TCO structures for energy and flexible electronics. Thin Solid Films 520:1–17

    Article  Google Scholar 

  48. Hecht DS, Kaner RB (2011) Solution-processed transparent electrodes. MRS Bull 36:749–755

    Article  Google Scholar 

  49. Layani M, Kamyshny A, Magdassi S (2014) Transparent conductors composed of nanomaterials. Nanoscale 6:5581–5591

    Article  Google Scholar 

  50. Lu W, Lieber CM (2006) Semiconductor nanowires. J Phys D Appl Phys 39:R387–R406

    Article  Google Scholar 

  51. Katz HE, Huang J (2009) Thin-film organic electronic devices. Annu Rev Mater Res 39:71–92

    Article  Google Scholar 

  52. Wang XS, Tang HP, Li XD, Hua X (2009) Investigations on the mechanical properties of conducting polymer coating-substrate structures and their influencing factors. Int J Mol Sci 10:5257–5284

    Article  Google Scholar 

  53. Biswas C, Lee YH (2011) Graphene versus carbon nanotubes in electronic devices. Adv Funct Mater 21:3806–3826

    Article  Google Scholar 

  54. Tahk D, Lee HH, Khang DY (2009) Elastic moduli of organic electronic materials by the buckling method. Macromolecules 42:7079–7083

    Article  Google Scholar 

  55. Savagatrup S, Makaram AS, Burke DJ, Lipomi DJ (2014) Mechanical properties of conjugated polymers and polymer-fullerene composites as a function of molecular structure. Adv Funct Mater 24:1169–1181

    Article  Google Scholar 

  56. O’Connor B, Chan EP, Chan C, Conrad BR, Richter LJ, Kline RJ, Heeney M, McCulloch I, Soles CL, DeLongchamp DM (2010) Correlations between mechanical and electrical properties of polythiophenes. ACS Nano 4:7538–7544

    Article  Google Scholar 

  57. Awartani O, Lemanski BI, Ro HW, Richter LJ, DeLongchamp DM, O’Connor BT (2013) Correlating stiffness, ductility, and morphology of polymer:fullerene films for solar cell applications. Adv Energy Mater 3:399–406

    Article  Google Scholar 

  58. Savagatrup S, Printz AD, Rodriquez D, Lipomi DJ (2014) Best of both worlds: conjugated polymers exhibiting good photovoltaic behavior and high tensile elasticity. Macromolecules 47:1981–1992

    Article  Google Scholar 

  59. Printz AD, Savagatrup S, Burke DJ, Purdy TN, Lipomi DJ (2014) Increased elasticity of a low-bandgap conjugated copolymer by random segmentation for mechanically robust solar cells. RSC Adv 4:13635–13643

    Article  Google Scholar 

  60. Green MA, Ho-Baillie A, Snaith HJ (2014) The emergence of perovskite solar cells. Nat Photonics 8:506–514

    Article  Google Scholar 

  61. Snaith HJ (2013) Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J Phys Chem Lett 4:3623–3630

    Article  Google Scholar 

  62. Cao Q, Xia MG, Shim M, Rogers JA (2006) Bilayer organic-inorganic gate dielectrics for high-performance, low-voltage, single-walled carbon nanotube thin-film transistors, complementary logic gates, and p-n diodes on plastic substrates. Adv Funct Mater 16:2355–2362

    Article  Google Scholar 

  63. Leterrier Y (2003) Durability of nanosized oxygen-barrier coatings on polymers—internal stresses. Prog Mater Sci 48:1–55

    Article  Google Scholar 

  64. Zardetto V, Brown TM, Reale A, Di Carlo A (2011) Substrates for flexible electronics: a practical investigation on the electrical, film flexibility, optical, temperature, and solvent resistance properties. J Polym Sci B Polym Phys 49:638–648

    Article  Google Scholar 

  65. Fortunato G, Pecora A, Maiolo L (2012) Polysilicon thin-film transistors on polymer substrates. Mater Sci Semicond Process 15:627–641

    Article  Google Scholar 

  66. Nathan A, Ahnood A, Cole MT, Lee S, Suzuki Y, Hiralal P, Bonaccorso F, Hasan T, Garcia-Gancedo L, Dyadyusha A, Haque S, Andrew P, Hofmann S, Moultrie J, Chu DP, Flewitt AJ, Ferrari AC, Kelly MJ, Robertson J, Amaratunga GAJ, Milne WI (2012) Flexible electronics: the next ubiquitous platform. Proc IEEE 100:1486–1517

    Article  Google Scholar 

  67. Xu Y (2013) Post-CMOS and post-MEMS compatible flexible skin technologies: a review. IEEE Sens J 13:3962–3975

    Article  Google Scholar 

  68. Toivola M, Halme J, Miettunen K, Aitola K, Lund PD (2009) Nanostructured dye solar cells on flexible substrates. Int J Energy Res 33:1145–1160

    Article  Google Scholar 

  69. MacDonald WA, Looney MK, MacKerron D, Eveson R, Rakos K (2008) Designing and manufacturing substrates for flexible electronics. Plast Rubber Compos 37:41–45

    Article  Google Scholar 

  70. MacDonald WA, Looney MK, MacKerron D, Eveson R, Adam R, Hashimoto K, Rakos K (2007) Latest advances in substrates for flexible electronics. J Soc Inf Disp 15:1075–1083

    Article  Google Scholar 

  71. Vijay V, Rao AD, Narayan KS (2011) In situ studies of strain dependent transport properties of conducting polymers on elastomeric substrates. J Appl Phys 109:084525

    Article  Google Scholar 

  72. Cotton DPJ, Popel A, Graz IM, Lacour SP (2011) Photopatterning the mechanical properties of polydimethylsiloxane films. J Appl Phys 109:054905

    Article  Google Scholar 

  73. Takahashi T, Takei K, Gillies AG, Fearing RS, Javey A (2011) Carbon nanotube active-matrix backplanes for conformal electronics and sensors. Nano Lett 11:5408–5413

    Article  Google Scholar 

  74. Tobjork D, Osterbacka R (2011) Paper electronics. Adv Mater 23:1935–1961

    Article  Google Scholar 

  75. Hu LB, Cui Y (2012) Energy and environmental nanotechnology in conductive paper and textiles. Energy Environ Sci 5:6423–6435

    Article  Google Scholar 

  76. Lukowicz P, Kirstein T, Troster G (2004) Wearable systems for health care applications. Methods Inf Med 43:232–238

    Google Scholar 

  77. Park S, Jayaraman S (2003) Smart textiles: wearable electronic systems. MRS Bull 28:585–591

    Article  Google Scholar 

  78. Salvado R, Loss C, Goncalves R, Pinho P (2012) Textile materials for the design of wearable antennas: a survey. Sensors 12:15841–15857

    Article  Google Scholar 

  79. Axisa F, Schmitt PM, Gehin C, Delhomme G, McAdams E, Dittmar A (2005) Flexible technologies and smart clothing for citizen medicine, home healthcare, and disease prevention. IEEE Trans Inf Technol Biomed 9:325–336

    Article  Google Scholar 

  80. Zeng W, Shu L, Li Q, Chen S, Wang F, Tao XM (2014) Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications. Adv Mater 26:5310–5336

    Article  Google Scholar 

  81. Hu LB, Pasta M, La Mantia F, Cui LF, Jeong S, Deshazer HD, Choi JW, Han SM, Cui Y (2010) Stretchable, porous, and conductive energy textiles. Nano Lett 10:708–714

    Article  Google Scholar 

  82. Sazonov A, Meitine M, Stryakhilev D, Nathan A (2006) Low-temperature materials and thin-film transistors for electronics on flexible substrates. Semiconductors 40:959–967

    Article  Google Scholar 

  83. Zhang K, Seo JH, Zhou WD, Ma ZQ (2012) Fast flexible electronics using transferrable silicon nanomembranes. J Phys D Appl Phys 45:143001

    Article  Google Scholar 

  84. Cho JH, Lee J, Xia Y, Kim B, He YY, Renn MJ, Lodge TP, Frisbie CD (2008) Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic. Nat Mater 7:900–906

    Article  Google Scholar 

  85. Zaumseil J, Sirringhaus H (2007) Electron and ambipolar transport in organic field-effect transistors. Chem Rev 107:1296–1323

    Article  Google Scholar 

  86. Chung HJ, Kim TI, Kim HS, Wells SA, Jo S, Ahmed N, Jung YH, Won SM, Bower CA, Rogers JA (2011) Fabrication of releasable single-crystal silicon-metal oxide field-effect devices and their deterministic assembly on foreign substrates. Adv Funct Mater 21:3029–3036

    Article  Google Scholar 

  87. Kim TI, Jung YH, Chung HJ, Yu KJ, Ahmed N, Corcoran CJ, Park JS, Jin SH, Rogers JA (2013) Deterministic assembly of releasable single crystal silicon-metal oxide field-effect devices formed from bulk wafers. Appl Phys Lett 102:182104

    Article  Google Scholar 

  88. Han ST, Zhou Y, Roy VAL (2013) Towards the development of flexible non-volatile memories. Adv Mater 25:5425–5449

    Article  Google Scholar 

  89. Kim DH, Xiao JL, Song JZ, Huang YG, Rogers JA (2010) Stretchable, curvilinear electronics based on inorganic materials. Adv Mater 22:2108–2124

    Article  Google Scholar 

  90. Kim TI, Kim RH, Rogers JA (2012) Microscale inorganic light-emitting diodes on flexible and stretchable substrates. IEEE Photon J 4:607–612

    Article  Google Scholar 

  91. Tok JBH, Bao ZA (2012) Recent advances in flexible and stretchable electronics, sensors and power sources. Sci China Chem 55:718–725

    Article  Google Scholar 

  92. Weerasinghe HC, Huang FZ, Cheng YB (2013) Fabrication of flexible dye sensitized solar cells on plastic substrates. Nano Energy 2:174–189

    Article  Google Scholar 

  93. Dennler G, Sariciftci NS (2005) Flexible conjugated polymer-based plastic solar cells: from basics to applications. Proc IEEE 93:1429–1439

    Article  Google Scholar 

  94. Angmo D, Krebs FC (2013) Flexible ITO-free polymer solar cells. J Appl Polym Sci 129:1–14

    Article  Google Scholar 

  95. Xie KY, Wei BQ (2014) Materials and structures for stretchable energy storage and conversion devices. Adv Mater 26:3592–3617

    Article  Google Scholar 

  96. Goetzberger A, Hebling C, Schock HW (2003) Photovoltaic materials, history, status and outlook. Mater Sci Eng, R 40:1–46

    Article  Google Scholar 

  97. Lee SY, Choi KH, Choi WS, Kwon YH, Jung HR, Shin HC, Kim JY (2013) Progress in flexible energy storage and conversion systems, with a focus on cable-type lithium-ion batteries. Energy Environ Sci 6:2414–2423

    Article  Google Scholar 

  98. Gwon H, Hong J, Kim H, Seo DH, Jeon S, Kang K (2014) Recent progress on flexible lithium rechargeable batteries. Energy Environ Sci 7:538–551

    Article  Google Scholar 

  99. Zhou GM, Li F, Cheng HM (2014) Progress in flexible lithium batteries and future prospects. Energy Environ Sci 7:1307–1338

    Article  Google Scholar 

  100. Zhang Y, Huang Y, Rogers JA (2015) Mechanics of stretchable batteries and supercapacitors. Curr Opin Solid State Mater Sci 19:190–199

    Article  Google Scholar 

  101. Bates JB, Dudney NJ, Neudecker B, Ueda A, Evans CD (2000) Thin-film lithium and lithium-ion batteries. Solid State Ionics 135:33–45

    Article  Google Scholar 

  102. Xu S, Zhang YH, Cho J, Lee J, Huang X, Jia L, Fan JA, Su YW, Su J, Zhang HG, Cheng HY, Lu BW, Yu CJ, Chuang C, Kim TI, Song T, Shigeta K, Kang S, Dagdeviren C, Petrov I, Braun PV, Huang YG, Paik U, Rogers JA (2013) Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat Commun 4:1543

    Article  Google Scholar 

  103. Koo JH, Seo J, Lee T (2012) Nanomaterials on flexible substrates to explore innovative functions: from energy harvesting to bio-integrated electronics. Thin Solid Films 524:1–19

    Article  Google Scholar 

  104. Chen Y, Lu BW, Ou DP, Feng X (2015) Mechanics of flexible and stretchable piezoelectrics for energy harvesting. Sci China Phys Mech Astron 58:594601

    Article  Google Scholar 

  105. Roberts ME, Sokolov AN, Bao ZN (2009) Material and device considerations for organic thin-film transistor sensors. J Mater Chem 19:3351–3363

    Article  Google Scholar 

  106. Hammock ML, Chortos A, Tee BCK, Tok JBH, Bao ZA (2013) The evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress. Adv Mater 25:5997–6037

    Article  Google Scholar 

  107. Kim DH, Ghaffari R, Lu NS, Rogers JA (2012) Flexible and stretchable electronics for biointegrated devices. Annu Rev Biomed Eng 14:113–128

    Article  Google Scholar 

  108. Kim DH, Lu NS, Huang YG, Rogers JA (2012) Materials for stretchable electronics in bioinspired and biointegrated devices. MRS Bull 37:226–235

    Article  Google Scholar 

  109. Minev IR, Musienko P, Hirsch A, Barraud Q, Wenger N, Moraud EM, Gandar J, Capogrosso M, Milekovic T, Asboth L, Torres RF, Vachicouras N, Liu Q, Pavlova N, Duis S, Larmagnac A, Voros J, Micera S, Suo Z, Courtine G, Lacour SP (2015) Electronic dura mater for long-term multimodal neural interfaces. Science 347:159–163

    Article  Google Scholar 

  110. Rivnay J, Owens RM, Malliaras GG (2014) The rise of organic bioelectronics. Chem Mater 26:679–685

    Article  Google Scholar 

  111. Jeong J-W, Shin G, Park SI, Yu KJ, Xu L, Rogers JA (2015) Soft materials in neuroengineering for hard problems in neuroscience. Neuron 86:175–186

    Article  Google Scholar 

  112. Kim DH, Lu NS, Ma R, Kim YS, Kim RH, Wang SD, Wu J, Won SM, Tao H, Islam A, Yu KJ, Kim TI, Chowdhury R, Ying M, Xu LZ, Li M, Chung HJ, Keum H, McCormick M, Liu P, Zhang YW, Omenetto FG, Huang YG, Coleman T, Rogers JA (2011) Epidermal electronics. Science 333:838–843

    Article  Google Scholar 

  113. Yeo WH, Kim YS, Lee J, Ameen A, Shi LK, Li M, Wang SD, Ma R, Jin SH, Kang Z, Huang YG, Rogers JA (2013) Multifunctional epidermal electronics printed directly onto the skin. Adv Mater 25:2773–2778

    Article  Google Scholar 

  114. Jang KI, Han SY, Xu S, Mathewson KE, Zhang YH, Jeong JW, Kim GT, Webb C, Lee JW, Dawidczyk TJ, Kim RH, Song YM, Yeo WH, Kim S, Cheng HY, Il Rhee S, Chung J, Kim B, Chung HU, Lee DJ, Yang YY, Cho M, Gaspar JG, Carbonari R, Fabiani M, Gratton G, Huang YG, Rogers JA (2014) Rugged and breathable forms of stretchable electronics with adherent composite substrates for transcutaneous monitoring. Nat Commun 5:4779

    Article  Google Scholar 

  115. Huang X, Liu YH, Cheng HY, Shin WJ, Fan JA, Liu ZJ, Lu CJ, Kong GW, Chen K, Patnaik D, Lee SH, Hage-Ali S, Huang YG, Rogers JA (2014) Materials and designs for wireless epidermal sensors of hydration and strain. Adv Funct Mater 24:3846–3854

    Article  Google Scholar 

  116. Bandodkar AJ, Jia WZ, Wang J (2015) Tattoo-based wearable electrochemical devices: a review. Electroanalysis 27:562–572

    Article  Google Scholar 

  117. Bandodkar AJ, Hung VWS, Jia WZ, Valdes-Ramirez G, Windmiller JR, Martinez AG, Ramirez J, Chan G, Kerman K, Wang J (2013) Tattoo-based potentiometric ion-selective sensors for epidermal pH monitoring. Analyst 138:123–128

    Article  Google Scholar 

  118. Bandodkar AJ, Molinnus D, Mirza O, Guinovart T, Windmiller JR, Valdes-Ramirez G, Andrade FJ, Schoning MJ, Wang J (2014) Epidermal tattoo potentiometric sodium sensors with wireless signal transduction for continuous non-invasive sweat monitoring. Biosens Bioelectron 54:603–609

    Article  Google Scholar 

  119. Kim J, de Araujo WR, Samek IA, Bandodkar AJ, Jia WZ, Brunetti B, Paixao TRLC, Wang J (2015) Wearable temporary tattoo sensor for real-time trace metal monitoring in human sweat. Electrochem Commun 51:41–45

    Article  Google Scholar 

  120. Windmiller JR, Bandodkar AJ, Valdes-Ramirez G, Parkhomovsky S, Martinez AG, Wang J (2012) Electrochemical sensing based on printable temporary transfer tattoos. Chem Commun 48:6794–6796

    Article  Google Scholar 

  121. Bandodkar AJ, Nuñez-Flores R, Jia W, Wang J (2015) All-printed stretchable electrochemical devices. Adv Mater 27:3060–3065

    Article  Google Scholar 

  122. Lumelsky VJ, Shur MS, Wagner S (2001) Sensitive skin. IEEE Sens J 1:41–51

    Article  Google Scholar 

  123. Lipomi DJ, Vosgueritchian M, Tee BCK, Hellstrom SL, Lee JA, Fox CH, Bao ZN (2011) Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat Nanotechnol 6:788–792

    Article  Google Scholar 

  124. Wagner S, Lacour SP, Jones J, Hsu PHI, Sturm JC, Li T, Suo ZG (2004) Electronic skin: architecture and components. Physica E 25:326–334

    Article  Google Scholar 

  125. Chortos A, Bao Z (2014) Skin-inspired electronic devices. Mater Today 17:321–331

    Article  Google Scholar 

  126. Kim J, Lee M, Shim HJ, Ghaffari R, Cho HR, Son D, Jung YH, Soh M, Choi C, Jung S, Chu K, Jeon D, Lee S-T, Kim JH, Choi SH, Hyeon T, Kim D-H (2014) Stretchable silicon nanoribbon electronics for skin prostheses. Nat Commun 5:5747

    Article  Google Scholar 

  127. Viventi J, Kim DH, Vigeland L, Frechette ES, Blanco JA, Kim YS, Avrin AE, Tiruvadi VR, Hwang SW, Vanleer AC, Wulsin DF, Davis K, Gelber CE, Palmer L, Van der Spiegel J, Wu J, Xiao JL, Huang YG, Contreras D, Rogers JA, Litt B (2011) Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat Neurosci 14:1599–1605

    Article  Google Scholar 

  128. Khaled I, Elmallah S, Cheng C, Moussa WA, Mushahwar VK, Elias AL (2013) A flexible base electrode array for intraspinal microstimulation. IEEE Trans Biomed Eng 60:2904–2913

    Article  Google Scholar 

  129. Zrenner E, Bartz-Schmidt KU, Benav H, Besch D, Bruckmann A, Gabel VP, Gekeler F, Greppmaier U, Harscher A, Kibbel S, Koch J, Kusnyerik A, Peters T, Stingl K, Sachs H, Stett A, Szurman P, Wilhelm B, Wilke R (2011) Subretinal electronic chips allow blind patients to read letters and combine them to words. Proc R Soc B 278:1489–1497

    Article  Google Scholar 

  130. Xu LZ, Gutbrod SR, Bonifas AP, Su YW, Sulkin MS, Lu NS, Chung HJ, Jang KI, Liu ZJ, Ying M, Lu C, Webb RC, Kim JS, Laughner JI, Cheng HY, Liu YH, Ameen A, Jeong JW, Kim GT, Huang YG, Efimov IR, Rogers JA (2014) 3D multifunctional integumentary membranes for spatiotemporal cardiac measurements and stimulation across the entire epicardium. Nat Commun 5:3329

    Google Scholar 

  131. Potter-Baker KA, Capadona JR (2015) Reducing the “stress”: antioxidative therapeutic and material approaches may prevent intracortical microelectrode failure. ACS Macro Lett 4:275–279

    Article  Google Scholar 

  132. Holt DJ, Grainger DW (2012) Host response to biomaterials. In: Hollinger JO (ed) An introduction to biomaterials. Taylor & Francis Group, Boca Raton, FL, pp 91–118

    Google Scholar 

  133. Marin C, Fernandez E (2010) Biocompatibility of intracortical microelectrodes: current status and future prospects. Front Neuroeng 3:1–6

    Article  Google Scholar 

  134. Prasad A, Sanchez JC (2012) Quantifying long-term microelectrode array functionality using chronic in vivo impedance testing. J Neural Eng 9:026028

    Article  Google Scholar 

  135. Biran R, Martin DC, Tresco PA (2005) Neuronal cell loss accompanies the brain tissue response to chronically implanted silicon microelectrode arrays. Exp Neurol 195:115–126

    Article  Google Scholar 

  136. Campbell SA (2001) The science and engineering of microelectronic fabrication. Oxford University Press, Oxford, UK

    Google Scholar 

  137. Alf ME, Asatekin A, Barr MC, Baxamusa SH, Chelawat H, Ozaydin-Ince G, Petruczok CD, Sreenivasan R, Tenhaeff WE, Trujillo NJ, Vaddiraju S, Xu JJ, Gleason KK (2010) Chemical vapor deposition of conformal, functional, and responsive polymer films. Adv Mater 22:1993–2027

    Article  Google Scholar 

  138. Kim H, Lee HBR, Maeng WJ (2009) Applications of atomic layer deposition to nanofabrication and emerging nanodevices. Thin Solid Films 517:2563–2580

    Article  Google Scholar 

  139. Knez M, Niesch K, Niinisto L (2007) Synthesis and surface engineering of complex nanostructures by atomic layer deposition. Adv Mater 19:3425–3438

    Article  Google Scholar 

  140. Moonen PF, Yakimets I, Huskens J (2012) Fabrication of transistors on flexible substrates: from mass-printing to high-resolution alternative lithography strategies. Adv Mater 24:5526–5541

    Article  Google Scholar 

  141. Krebs FC (2009) Polymer solar cell modules prepared using roll-to-roll methods: knife-over-edge coating, slot-die coating and screen printing. Sol Energy Mater Sol Cells 93:465–475

    Article  Google Scholar 

  142. Krebs FC, Gevorgyan SA, Alstrup J (2009) A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies. J Mater Chem 19:5442–5451

    Article  Google Scholar 

  143. Jain K, Klosner M, Zemel M, Raghunandan S (2005) Flexible electronics and displays: high-resolution, roll-to-roll, projection lithography and photoablation processing technologies for high-throughput production. Proc IEEE 93:1500–1510

    Article  Google Scholar 

  144. Treutlein R, Bergsmann M, Stonley CJ (2006) Reel-to-reel vacuum metallization. In: Klauk H (ed) Organic electronics, materials, manufacturing and applications. Wiley-VCH, Weinheim, pp 183–202

    Google Scholar 

  145. Reinhold E, Faber J (2011) Large area electron beam physical vapor deposition (EB-PVD) and plasma activated electron beam (EB) evaporation—Status and prospects. Surf Coat Technol 206:1653–1659

    Article  Google Scholar 

  146. Ludwig R, Kukla R, Josephson E (2005) Vacuum web coating—state of the art and potential for electronics. Proc IEEE 93:1483–1490

    Article  Google Scholar 

  147. Juang ZY, Wu CY, Lu AY, Su CY, Leou KC, Chen FR, Tsai CH (2010) Graphene synthesis by chemical vapor deposition and transfer by a roll-to-roll process. Carbon 48:3169–3174

    Article  Google Scholar 

  148. Kukla R, Ludwig R, Meinel J (1996) Overview on modern vacuum web coating technology. Surf Coat Technol 86–7:753–761

    Article  Google Scholar 

  149. Kessels WMM, Putkonen M (2011) Advanced process technologies: plasma, direct-write, atmospheric pressure, and roll-to-roll ALD. MRS Bull 36:907–913

    Article  Google Scholar 

  150. Yin ZP, Huang YA, Bu NB, Wang XM, Xiong YL (2010) Inkjet printing for flexible electronics: materials, processes and equipments. Chin Sci Bull 55:3383–3407

    Article  Google Scholar 

  151. Street RA, Wong WS, Ready SE, Chabinyc IL, Arias AC, Limb S, Salleo A, Lujan R (2006) Jet printing flexible displays. Mater Today 9:32–37

    Article  Google Scholar 

  152. Ahn BY, Duoss EB, Motala MJ, Guo XY, Park SI, Xiong YJ, Yoon J, Nuzzo RG, Rogers JA, Lewis JA (2009) Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes. Science 323:1590–1593

    Article  Google Scholar 

  153. Muth JT, Vogt DM, Truby RL, Menguc Y, Kolesky DB, Wood RJ, Lewis JA (2014) Embedded 3D printing of strain sensors within highly stretchable elastomers. Adv Mater 26:6307–6312

    Article  Google Scholar 

  154. Kadekar V, Fang WY, Liou F (2004) Deposition technologies for micromanufacturing: a review. J Manuf Sci Eng Trans ASME 126:787–795

    Article  Google Scholar 

  155. Arnold CB, Serra P, Pique A (2007) Laser direct-write techniques for printing of complex materials. MRS Bull 32:23–31

    Article  Google Scholar 

  156. Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63:2223–2253

    Article  Google Scholar 

  157. Li D, Xia YN (2004) Electrospinning of nanofibers: reinventing the wheel? Adv Mater 16:1151–1170

    Article  Google Scholar 

  158. Chabinyc ML, Wong WS, Arias AC, Ready S, Lujan RA, Daniel JH, Krusor B, Apte RB, Salleo A, Street RA (2005) Printing methods and materials for large-area electronic devices. Proc IEEE 93:1491–1499

    Article  Google Scholar 

  159. Lee C, Kang H, Kim H, Shin K (2010) Noble logic for preventing scratch on roll-to-roll printed layers in noncontacting transportation. Jpn J Appl Phys 49:05EC07

    Google Scholar 

  160. Keum H, Carlson A, Ning HL, Mihi A, Eisenhaure JD, Braun PV, Rogers JA, Kim S (2012) Silicon micro-masonry using elastomeric stamps for three-dimensional microfabrication. J Micromech Microeng 22:055018

    Article  Google Scholar 

  161. Keum H, Chung HJ, Kim S (2013) Electrical contact at the interface between silicon and transfer-printed gold films by eutectic joining. ACS Appl Mater Interfaces 5:6061–6065

    Article  Google Scholar 

  162. Callister WD (2007) Materials science and engineering: an introduction. John Wiley & Sons, New York

    Google Scholar 

  163. Lee YY, Lee JH, Cho JY, Kim NR, Nam DH, Choi IS, Nam KT, Joo YC (2013) Stretching-induced growth of PEDOT-rich cores: a new mechanism for strain-dependent resistivity change in PEDOT:PSS films. Adv Funct Mater 23:4020–4027

    Article  Google Scholar 

  164. Herakovich CT (1981) On the relationship between engineering properties and delamination of composite-materials. J Compos Mater 15:336–348

    Google Scholar 

  165. Leterrier Y, Pellaton D, Mendels D, Glauser R, Andersons J, Manson JAE (2001) Biaxial fragmentation of thin silicon oxide coatings on poly(ethylene terephthalate). J Mater Sci 36:2213–2225. doi:10.1023/A:1017552302379

    Article  Google Scholar 

  166. Gleskova H, Cheng IC, Wagner S, Sturm JC, Suo ZG (2006) Mechanics of thin-film transistors and solar cells on flexible substrates. Sol Energy 80:687–693

    Article  Google Scholar 

  167. Janssen GCAM, Abdalla MM, van Keulen F, Pujada BR, van Venrooy B (2009) Celebrating the 100th anniversary of the Stoney equation for film stress: developments from polycrystalline steel strips to single crystal silicon wafers. Thin Solid Films 517:1858–1867

    Article  Google Scholar 

  168. Suo Z, Ma EY, Gleskova H, Wagner S (1999) Mechanics of rollable and foldable film-on-foil electronics. Appl Phys Lett 74:1177–1179

    Article  Google Scholar 

  169. Leterrier Y, Medico L, Demarco F, Manson JAE, Betz U, Escola MF, Olsson MK, Atamny F (2004) Mechanical integrity of transparent conductive oxide films for flexible polymer-based displays. Thin Solid Films 460:156–166

    Article  Google Scholar 

  170. Vella D, Bico J, Boudaoud A, Roman B, Reis PM (2009) The macroscopic delamination of thin films from elastic substrates. Proc Natl Acad Sci 106:10901–10906

    Article  Google Scholar 

  171. Kim SR, Nairn JA (2000) Fracture mechanics analysis of coating/substrate systems Part I: analysis of tensile and bending experiments. Eng Fract Mech 65:573–593

    Article  Google Scholar 

  172. Miller DC, Foster RR, Zhang YD, Jen SH, Bertrand JA, Lu ZX, Seghete D, O’Patchen JL, Yang RG, Lee YC, George SM, Dunn ML (2009) The mechanical robustness of atomic-layer- and molecular-layer-deposited coatings on polymer substrates. J Appl Phys 105:093527

    Article  Google Scholar 

  173. Leterrier Y, Mottet A, Bouquet N, Gillieron D, Dumont P, Pinyol A, Lalande L, Waller JH, Manson JAE (2010) Mechanical integrity of thin inorganic coatings on polymer substrates under quasi-static, thermal and fatigue loadings. Thin Solid Films 519:1729–1737

    Article  Google Scholar 

  174. Leterrier Y, Andersons J, Pitton Y, Manson JAE (1997) Adhesion of silicon oxide layers on poly(ethylene terephthalate) 2. Effect of coating thickness on adhesive and cohesive strengths. J Polym Sci B Polym Phys 35:1463–1472

    Article  Google Scholar 

  175. Laws N, Dvorak GJ (1988) Progressive transverse cracking in composite laminates. J Compos Mater 22:900–916

    Article  Google Scholar 

  176. Sim B, Kim EH, Park J, Lee M (2009) Highly enhanced mechanical stability of indium tin oxide film with a thin Al buffer layer deposited on plastic substrate. Surf Coat Technol 204:309–312

    Article  Google Scholar 

  177. Park SK, Han JI, Moon DG, Kim WK (2003) Mechanical stability of externally deformed indium-tin-oxide films on polymer substrates. Jpn J Appl Phys 42:623–629

    Article  Google Scholar 

  178. van der Sluis O, Abdallah AA, Bouten PCP, Timmermans PHM, den Toonder JMJ, de With G (2011) Effect of a hard coat layer on buckle delamination of thin ITO layers on a compliant elasto-plastic substrate: an experimental-numerical approach. Eng Fract Mech 78:877–889

    Article  Google Scholar 

  179. Jia Z, Tucker MB, Li T (2011) Failure mechanics of organic-inorganic multilayer permeation barriers in flexible electronics. Compos Sci Technol 71:365–372

    Article  Google Scholar 

  180. Wang JS, Sugimura Y, Evans AG, Tredway WK (1998) The mechanical performance of DLC films on steel substrates. Thin Solid Films 325:163–174

    Article  Google Scholar 

  181. Park JW, Lee SH, Yang CW (2013) Investigation of the interfacial adhesion of the transparent conductive oxide films to large-area flexible polymer substrates using laser-induced thermo-mechanical stresses. J Appl Phys 114:063513

    Article  Google Scholar 

  182. Park SI, Ahn JH, Feng X, Wang SD, Huang YG, Rogers JA (2008) Theoretical and experimental studies of bending of inorganic electronic materials on plastic substrates. Adv Funct Mater 18:2673–2684

    Article  Google Scholar 

  183. van der Sluis O, Hsu YY, Timmermans PHM, Gonzalez M, Hoefnagels JPM (2011) Stretching-induced interconnect delamination in stretchable electronic circuits. J Phys D Appl Phys 44:034008

    Article  Google Scholar 

  184. Chen H, Lu BW, Lin Y, Feng X (2014) Interfacial failure in flexible electronic devices. IEEE Electron Device Lett 35:132–134

    Article  Google Scholar 

  185. Bruner C, Dauskardt R (2014) Role of molecular weight on the mechanical device properties of organic polymer solar cells. Macromolecules 47:1117–1121

    Article  Google Scholar 

  186. Brand V, Bruner C, Dauskardt RH (2012) Cohesion and device reliability in organic bulk heterojunction photovoltaic cells. Sol Energy Mater Sol Cells 99:182–189

    Article  Google Scholar 

  187. Lewis J (2006) Material challenge for flexible organic devices. Mater Today 9:38–45

    Article  Google Scholar 

  188. Suo ZG (2012) Mechanics of stretchable electronics and soft machines. MRS Bull 37:218–225

    Article  Google Scholar 

  189. Gleskova H, Wagner S, Suo Z (1999) Failure resistance of amorphous silicon transistors under extreme in-plane strain. Appl Phys Lett 75:3011–3013

    Article  Google Scholar 

  190. Wu JA, Li M, Chen WQ, Kim DH, Kim YS, Huang YG, Hwang KC, Kang Z, Rogers JA (2010) A strain-isolation design for stretchable electronics. Acta Mech Sin 26:881–888

    Article  Google Scholar 

  191. Kim DH, Rogers JA (2008) Stretchable electronics: materials strategies and devices. Adv Mater 20:4887–4892

    Article  Google Scholar 

  192. Bossuyt F, Guenther J, Loher T, Seckel M, Sterken T, de Vries J (2011) Cyclic endurance reliability of stretchable electronic substrates. Microelectron Reliab 51:628–635

    Article  Google Scholar 

  193. Huyghe B, Rogier H, Vanfleteren J, Axisa F (2008) Design and manufacturing of stretchable high-frequency interconnects. IEEE Trans Adv Packag 31:802–808

    Article  Google Scholar 

  194. Hsu YY, Papakyrikos C, Liu D, Wang XY, Raj M, Zhang BS, Ghaffari R (2014) Design for reliability of multi-layer stretchable interconnects. J Micromech Microeng 24:095014

    Article  Google Scholar 

  195. Li T, Suo ZG, Lacour SP, Wagner S (2005) Compliant thin film patterns of stiff materials as platforms for stretchable electronics. J Mater Res 20:3274–3277

    Article  Google Scholar 

  196. Hsu YY, Lucas K, Davis D, Ghaffari R, Elolampi B, Dalal M, Work J, Lee S, Rafferty C, Dowling K (2013) Design for reliability of multi-layer thin film stretchable interconnects. In: IEEE 63rd electronic components and technology conference, pp 623–628

  197. Fan JA, Yeo WH, Su YW, Hattori Y, Lee W, Jung SY, Zhang YH, Liu ZJ, Cheng HY, Falgout L, Bajema M, Coleman T, Gregoire D, Larsen RJ, Huang YG, Rogers JA (2014) Fractal design concepts for stretchable electronics. Nat Commun 5:3266

    Google Scholar 

  198. Rogers JA (2014) Materials for semiconductor devices that can bend, fold, twist, and stretch. MRS Bull 39:549–556

    Article  Google Scholar 

  199. Khang DY, Rogers JA, Lee HH (2009) Mechanical buckling: mechanics, metrology, and stretchable electronics. Adv Funct Mater 19:1526–1536

    Article  Google Scholar 

  200. Kim DH, Ahn JH, Choi WM, Kim HS, Kim TH, Song JZ, Huang YGY, Liu ZJ, Lu C, Rogers JA (2008) Stretchable and foldable silicon integrated circuits. Science 320:507–511

    Article  Google Scholar 

  201. Ko HC, Shin G, Wang SD, Stoykovich MP, Lee JW, Kim DH, Ha JS, Huang YG, Hwang KC, Rogers JA (2009) Curvilinear electronics formed using silicon membrane circuits and elastomeric transfer elements. Small 5:2703–2709

    Article  Google Scholar 

  202. Sun YG, Choi WM, Jiang HQ, Huang YGY, Rogers JA (2006) Controlled buckling of semiconductor nanoribbons for stretchable electronics. Nat Nanotechnol 1:201–207

    Article  Google Scholar 

  203. Su YW, Wu J, Fan ZC, Hwang KC, Song JZ, Huang YG, Rogers JA (2012) Postbuckling analysis and its application to stretchable electronics. J Mech Phys Solids 60:487–508

    Article  Google Scholar 

  204. Choi WM, Song JZ, Khang DY, Jiang HQ, Huang YY, Rogers JA (2007) Biaxially stretchable “wavy” silicon nanomembranes. Nano Lett 7:1655–1663

    Article  Google Scholar 

  205. Jiang HQ, Khang DY, Song JZ, Sun YG, Huang YG, Rogers JA (2007) Finite deformation mechanics in buckled thin films on compliant supports. Proc Natl Acad Sci 104:15607–15612

    Article  Google Scholar 

  206. Gorrn P, Wagner S (2010) Topographies of plasma-hardened surfaces of poly(dimethylsiloxane). J Appl Phys 108:093522

    Article  Google Scholar 

  207. Zienkiewicz OC, Taylor RL, Zhu JZ (2013) The finite element method: its basis and fundamentals. Elsevier, Oxford

    Google Scholar 

  208. Heubner KH, Dewhirst DL, Smith DE, Byrom TG (2001) The finite element method for engineers. John Wiley & Sons, New York

    Google Scholar 

  209. van der Sluis O, Engelen RAB, Timmermans PHM, Zhang GQ (2009) Numerical analysis of delamination and cracking phenomena in multi-layered flexible electronics. Microelectron Reliab 49:853–860

    Article  Google Scholar 

  210. Xu W, Lu TJ, Wang F (2010) Effects of interfacial properties on the ductility of polymer-supported metal films for flexible electronics. Int J Solids Struct 47:1830–1837

    Article  Google Scholar 

  211. Kim DH, Song JZ, Choi WM, Kim HS, Kim RH, Liu ZJ, Huang YY, Hwang KC, Zhang YW, Rogers JA (2008) Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proc Natl Acad Sci 105:18675–18680

    Article  Google Scholar 

  212. Ali A, Hosseini M, Sahari BB (2010) A review of constitutive models for rubber-like materials. Am J Eng Appl Sci 3:232–239

    Article  Google Scholar 

  213. Liu GR, Quek SS (2013) The finite element method. Elsevier, Oxford

    Google Scholar 

  214. van Hal BAE, Peerlings RHJ, Geers MGD, van der Sluis OD (2007) Cohesive zone modeling for structural integrity analysis of IC interconnects. Microelectron Reliab 47:1251–1261

    Article  Google Scholar 

  215. Jin ZH, Sun CT (2006) A comparison of cohesive zone modeling and classical fracture mechanics based on near tip stress field. Int J Solids Struct 43:1047–1060

    Article  Google Scholar 

  216. ASTM Standard D1709-09 (2009) Impact resistance of plastic film by the free-falling dart method

  217. ASTM Standard D3359-09 (2009) Measuring adhesion by tape test

  218. ASTM Standard C1624-05 (2009) Adhesion strength and mechanical failure modes of ceramic coatings by quantitative single point scratch testing

  219. ASTM Standard D5628-10 (2010) Impact resistance of flat, rigid plastic specimens by means of a falling dart (tup or falling mass)

  220. ASTM Standard D5420-10 (2010) Impact resistance of flat, rigid plastic specimen by means of a striker impacted by a falling weight (Gardner impact)

  221. ASTM Standard D7187-10 (2010) Measuring mechanistic aspects of scratch/mar behavior of paint coatings by nanoscratching

  222. ASTM Standard D7027-13 (2013) Evaluation of scratch resistance of polymeric coatings and plastics using an instrumented scratch machine

  223. ASTM Standard E143-13 (2014) Shear modulus at room temperature

  224. ASTM Standard D882-12 (2012) Standard test method for tensile properties of thin plastic sheeting

  225. Sekitani T, Iba S, Kato Y, Noguchi Y, Someya T, Sakurai T (2005) Ultraflexible organic field-effect transistors embedded at a neutral strain position. Appl Phys Lett 87:173502

    Article  Google Scholar 

  226. Sokolov AN, Cao YD, Johnson OB, Bao ZA (2012) Mechanistic considerations of bending-strain effects within organic semiconductors on polymer dielectrics. Adv Funct Mater 22:175–183

    Article  Google Scholar 

  227. Cairns DR, Crawford GP (2005) Electromechanical properties of transparent conducting substrates for flexible electronic displays. Proc IEEE 93:1451–1458

    Article  Google Scholar 

  228. Fu HR, Xu S, Xu RX, Jiang JQ, Zhang YH, Rogers JA, Huang YG (2015) Lateral buckling and mechanical stretchability of fractal interconnects partially bonded onto an elastomeric substrate. Appl Phys Lett 106:091902

    Article  Google Scholar 

  229. Janeczek K, Serzysko T, Jakubowska M, Koziol G, Mlozniak A (2012) Mechanical durability of RFID chip joints assembled on flexible substrates. Solder Surf Mt Technol 24:206–215

    Article  Google Scholar 

  230. Su YW, Li R, Cheng HY, Ying M, Bonifas AP, Hwang KC, Rogers JA, Huang YG (2013) Mechanics of finger-tip electronics. J Appl Phys 114:064511

    Google Scholar 

  231. Demirci I, Gauthier C, Schirrer R (2005) Mechanical analysis of the damage of a thin polymeric coating during scratching: role of the ratio of the coating thickness to the roughness of a scratching tip. Thin Solid Films 479:207–215

    Article  Google Scholar 

  232. Chen Z, Wu LYL, Chwa E, Tham O (2008) Scratch resistance of brittle thin films on compliant substrates. Mater Sci Eng, A 493:292–298

    Article  Google Scholar 

  233. Mittal KL (1976) Adhesion measurement of thin films. Electrocomp Sci Technol 3:21–42

    Article  Google Scholar 

  234. Volinsky AA, Moody NR, Gerberich WW (2002) Interfacial toughness measurements for thin films on substrates. Acta Mater 50:441–466

    Article  Google Scholar 

  235. Wang XS, Feng XQ (2002) Effects of thickness on mechanical properties of conducting polythiophene films. J Mater Sci Lett 21:715–717

    Article  Google Scholar 

  236. Wang XS, Xut JK, Shi GQ, Lu X (2002) Microstructure-mechanical properties relationship in conducting polypyrrole films. J Mater Sci 37:5171–5176. doi:10.1023/A:1021093211625

    Article  Google Scholar 

  237. Li HC, Rao KK, Jeng JY, Hsiao YJ, Guo TF, Jeng YR, Wen TC (2011) Nano-scale mechanical properties of polymer/fullerene bulk hetero-junction films and their influence on photovoltaic cells. Sol Energy Mater Sol Cells 95:2976–2980

    Article  Google Scholar 

  238. Chang SY, Hsiao YC, Huang YC (2008) Preparation and mechanical properties of aluminum-doped zinc oxide transparent conducting films. Surf Coat Technol 202:5416–5420

    Article  Google Scholar 

  239. Saha R, Nix WD (2002) Effects of the substrate on the determination of thin film mechanical properties by nanoindentation. Acta Mater 50:23–38

    Article  Google Scholar 

  240. Lipomi DJ, Chong H, Vosgueritchian M, Mei JG, Bao ZA (2012) Toward mechanically robust and intrinsically stretchable organic solar cells: evolution of photovoltaic properties with tensile strain. Sol Energy Mater Sol Cells 107:355–365

    Article  Google Scholar 

  241. Stafford CM, Harrison C, Beers KL, Karim A, Amis EJ, Vanlandingham MR, Kim HC, Volksen W, Miller RD, Simonyi EE (2004) A buckling-based metrology for measuring the elastic moduli of polymeric thin films. Nat Mater 3:545–550

    Article  Google Scholar 

  242. Lang U, Suss T, Dual J (2012) Microtensile testing of submicrometer thick functional polymer samples. Rev Sci Instrum 83:075110

    Article  Google Scholar 

  243. Tait JG, Worfolk BJ, Maloney SA, Hauger TC, Elias AL, Buriak JM, Harris KD (2013) Spray coated high-conductivity PEDOT:PSS transparent electrodes for stretchable and mechanically-robust organic solar cells. Sol Energy Mater Sol Cells 110:98–106

    Article  Google Scholar 

  244. Jedaa A, Halik M (2009) Toward strain resistant flexible organic thin film transistors. Appl Phys Lett 95:103309

    Article  Google Scholar 

  245. Grego S, Lewis J, Vick E, Temple D (2005) Development and evaluation of bend-testing techniques for flexible-display applications. J Soc Inf Disp 13:575–581

    Article  Google Scholar 

  246. Baumert EK, Pierron ON (2012) Fatigue properties of atomic-layer-deposited alumina ultra-barriers and their implications for the reliability of flexible organic electronics. Appl Phys Lett 101:251901

    Article  Google Scholar 

  247. Park KI, Lee SY, Kim S, Chang J, Kang SJL, Lee KJ (2010) Bendable and transparent barium titanate capacitors on plastic substrates for high performance flexible ferroelectric devices. Electrochem Solid-State Lett 13:G57–G59

    Article  Google Scholar 

  248. Ge J, Yao HB, Wang X, Ye YD, Wang JL, Wu ZY, Liu JW, Fan FJ, Gao HL, Zhang CL, Yu SH (2013) Stretchable conductors based on silver nanowires: improved performance through a binary network design. Angew Chem Int Ed 52:1654–1659

    Article  Google Scholar 

  249. Yu Y, Zeng JF, Chen CJ, Xie Z, Guo RS, Liu ZL, Zhou XC, Yang Y, Zheng ZJ (2014) Three-dimensional compressible and stretchable conductive composites. Adv Mater 26:810–815

    Article  Google Scholar 

  250. Chou N, Yoo S, Kim S (2012) Fabrication of stretchable and flexible electrodes based on PDMS substrate. In: IEEE international conference on MEMS, pp 247–250

  251. Lee P, Ham J, Lee J, Hong S, Han S, Suh YD, Lee SE, Yeo J, Lee SS, Lee D, Ko SH (2014) Highly stretchable or transparent conductor fabrication by a hierarchical multiscale hybrid nanocomposite. Adv Funct Mater 24:5671–5678

    Article  Google Scholar 

  252. Hu LB, Choi JW, Yang Y, Jeong S, La Mantia F, Cui LF, Cui Y (2009) Highly conductive paper for energy-storage devices. Proc Natl Acad Sci 106:21490–21494

    Article  Google Scholar 

  253. Russo A, Ahn BY, Adams JJ, Duoss EB, Bernhard JT, Lewis JA (2011) Pen-on-paper flexible electronics. Adv Mater 23:3426–3430

    Article  Google Scholar 

  254. Lee HM, Lee HB, Jung DS, Yun JY, Ko SH, Park SB (2012) Solution Processed Aluminum Paper for Flexible Electronics. Langmuir 28:13127–13135

    Article  Google Scholar 

  255. Ghosh DS, Chen TL, Formica N, Hwang J, Bruder I, Pruneri V (2012) High figure-of-merit Ag/Al:ZnO nano-thick transparent electrodes for indium-free flexible photovoltaics. Sol Energy Mater Sol Cells 107:338–343

    Article  Google Scholar 

  256. Lewis J, Grego S, Chalamala B, Vick E, Temple D (2004) Highly flexible transparent electrodes for organic light-emitting diode-based displays. Appl Phys Lett 85:3450–3452

    Article  Google Scholar 

  257. Alzoubi K, Hamasha MM, Lu SS, Sammakia B (2011) Bending fatigue study of sputtered ITO on flexible substrate. J Disp Technol 7:593–600

    Article  Google Scholar 

  258. Choi KH, Jeong JA, Kang JW, Kim DG, Kim JK, Na SI, Kim DY, Kim SS, Kim HK (2009) Characteristics of flexible indium tin oxide electrode grown by continuous roll-to-roll sputtering process for flexible organic solar cells. Sol Energy Mater Sol Cells 93:1248–1255

    Article  Google Scholar 

  259. Park YS, Choi KH, Kim HK (2009) Room temperature flexible and transparent ITO/Ag/ITO electrode grown on flexile PES substrate by continuous roll-to-roll sputtering for flexible organic photovoltaics. J Phys D Appl Phys 42:235109

    Article  Google Scholar 

  260. Muthukumar A, Giusti G, Jouvert M, Consonni V, Bellet D (2013) Fluorine-doped SnO2 thin films deposited on polymer substrate for flexible transparent electrodes. Thin Solid Films 545:302–309

    Article  Google Scholar 

  261. Zeng XY, Zhang QK, Yu RM, Lu CZ (2010) A new transparent conductor: silver nanowire film buried at the surface of a transparent polymer. Adv Mater 22:4484–4488

    Article  Google Scholar 

  262. Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710

    Article  Google Scholar 

  263. Lim JW, Cho DY, Kim J, Na SI, Kim HK (2012) Simple brush-painting of flexible and transparent Ag nanowire network electrodes as an alternative ITO anode for cost-efficient flexible organic solar cells. Sol Energy Mater Sol Cells 107:348–354

    Article  Google Scholar 

  264. Yu ZB, Zhang QW, Li L, Chen Q, Niu XF, Liu J, Pei QB (2011) Highly flexible silver nanowire electrodes for shape-memory polymer light-emitting diodes. Adv Mater 23:664–668

    Article  Google Scholar 

  265. Hauger TC, Al-Rafia SMI, Buriak JM (2013) Rolling silver nanowire electrodes: simultaneously addressing adhesion, roughness, and conductivity. ACS Appl Mater Interfaces 5:12663–12671

    Article  Google Scholar 

  266. De S, Higgins TM, Lyons PE, Doherty EM, Nirmalraj PN, Blau WJ, Boland JJ, Coleman JN (2009) Silver nanowire networks as flexible, transparent, conducting films: extremely high DC to optical conductivity ratios. ACS Nano 3:1767–1774

    Article  Google Scholar 

  267. Hsu P-C, Kong D, Wang S, Wang H, Welch AJ, Wu H, Cui Y (2014) Electrolessly deposited electrospun metal nanowire transparent electrodes. J Am Chem Soc 136:10593–10596

    Article  Google Scholar 

  268. Jiu J, Nogi M, Sugahara T, Tokuno T, Araki T, Komoda N, Suganuma K, Uchida H, Shinozaki K (2012) Strongly adhesive and flexible transparent silver nanowire conductive films fabricated with a high-intensity pulsed light technique. J Mater Chem 22:23561–23567

    Article  Google Scholar 

  269. Guo CF, Sun TY, Liu QH, Suo ZG, Ren ZF (2014) Highly stretchable and transparent nanomesh electrodes made by grain boundary lithography. Nat Commun 5:3121

    Google Scholar 

  270. Gao TC, Wang BM, Ding B, Lee JK, Leu PW (2014) Uniform and ordered copper nanomeshes by microsphere lithography for transparent electrodes. Nano Lett 14:2105–2110

    Article  Google Scholar 

  271. Wu H, Hu LB, Rowell MW, Kong DS, Cha JJ, McDonough JR, Zhu J, Yang YA, McGehee MD, Cui Y (2010) Electrospun metal nanofiber webs as high-performance transparent electrode. Nano Lett 10:4242–4248

    Article  Google Scholar 

  272. Ham J, Kim S, Jung GH, Dong WJ, Lee JL (2013) Design of broadband transparent electrodes for flexible organic solar cells. J Mater Chem A 1:3076–3082

    Article  Google Scholar 

  273. Gaynor W, Burkhard GF, McGehee MD, Peumans P (2011) Smooth nanowire/polymer composite transparent electrodes. Adv Mater 23:2905–2910

    Article  Google Scholar 

  274. Chang HX, Wang GF, Yang A, Tao XM, Liu XQ, Shen YD, Zheng ZJ (2010) A transparent, flexible, low-temperature, and solution-processible graphene composite electrode. Adv Funct Mater 20:2893–2902

    Article  Google Scholar 

  275. De S, Lyons PE, Sorel S, Doherty EM, King PJ, Blau WJ, Nirmalraj PN, Boland JJ, Scardaci V, Joimel J, Coleman JN (2009) Transparent, flexible, and highly conductive thin films based on polymer-nanotube composites. ACS Nano 3:714–720

    Article  Google Scholar 

  276. Choi DY, Kang HW, Sung HJ, Kim SS (2013) Annealing-free, flexible silver nanowire-polymer composite electrodes via a continuous two-step spray-coating method. Nanoscale 5:977–983

    Article  Google Scholar 

  277. Lee MS, Lee K, Kim SY, Lee H, Park J, Choi KH, Kim HK, Kim DG, Lee DY, Nam S, Park JU (2013) High-performance, transparent, and stretchable electrodes using graphene-metal nanowire hybrid structures. Nano Lett 13:2814–2821

    Article  Google Scholar 

  278. Salvatierra RV, Cava CE, Roman LS, Zarbin AJG (2013) ITO-free and flexible organic photovoltaic device based on high transparent and conductive polyaniline/carbon nanotube thin films. Adv Funct Mater 23:1490–1499

    Article  Google Scholar 

  279. Lee J, Lee P, Lee H, Lee D, Lee SS, Ko SH (2012) Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel. Nanoscale 4:6408–6414

    Article  Google Scholar 

  280. Choi KH, Nam HJ, Jeong JA, Cho SW, Kim HK, Kang JW, Kim DG, Cho WJ (2008) Highly flexible and transparent InZnSnOx/Ag/InZnSnOx multilayer electrode for flexible organic light emitting diodes. Appl Phys Lett 92:223302

    Article  Google Scholar 

  281. Jing MX, Li M, Chen CY, Wang Z, Shen XQ (2015) Highly bendable, transparent, and conductive AgNWs-PET films fabricated via transfer-printing and second pressing technique. J Mater Sci 50:6437–6443. doi:10.1007/s10853-015-9198-3

    Article  Google Scholar 

  282. Munzenrieder N, Cherenack KH, Troster G (2011) The effects of mechanical bending and illumination on the performance of flexible IGZO TFTs. IEEE Trans Electron Devices 58:2041–2048

    Article  Google Scholar 

  283. Sekitani T, Zschieschang U, Klauk H, Someya T (2010) Flexible organic transistors and circuits with extreme bending stability. Nat Mater 9:1015–1022

    Article  Google Scholar 

  284. Han L, Song K, Mandlik P, Wagner S (2010) Ultraflexible amorphous silicon transistors made with a resilient insulator. Appl Phys Lett 96:042111

    Article  Google Scholar 

  285. Gleskova H, Wagner S, Soboyejo W, Suo Z (2002) Electrical response of amorphous silicon thin-film transistors under mechanical strain. J Appl Phys 92:6224–6229

    Article  Google Scholar 

  286. Kuo PC, Jamshidi-Roudbari A, Hatalis M (2009) Electrical characteristics and mechanical limitation of polycrystalline silicon thin film transistor on steel foil under strain. J Appl Phys 106:114502

    Article  Google Scholar 

  287. Cao Q, Kim HS, Pimparkar N, Kulkarni JP, Wang CJ, Shim M, Roy K, Alam MA, Rogers JA (2008) Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature 454:495–500

    Article  Google Scholar 

  288. Loo YL, Someya T, Baldwin KW, Bao ZN, Ho P, Dodabalapur A, Katz HE, Rogers JA (2002) Soft, conformable electrical contacts for organic semiconductors: high-resolution plastic circuits by lamination. Proc Natl Acad Sci 99:10252–10256

    Article  Google Scholar 

  289. Sekitani T, Iba S, Kato Y, Noguchi Y, Sakurai T, Someya T (2006) Submillimeter radius bendable organic field-effect transistors. J Non-Cryst Solids 352:1769–1773

    Article  Google Scholar 

  290. Kuo PC, Jamshidi-Roudbari A, Hatalis M (2007) Effect of mechanical strain on mobility of polycrystalline silicon thin-film transistors fabricated on stainless steel foil. Appl Phys Lett 91:243507

    Article  Google Scholar 

  291. Won SH, Chung JK, Lee CB, Nam HC, Hur JH, Jang J (2004) Effect of mechanical and electrical stresses on the performance of an a-Si: H TFT on plastic substrate. J Electrochem Soc 151:G167–G170

    Article  Google Scholar 

  292. Servati P, Nathan A (2005) Orientation-dependent strain tolerance of amorphous silicon transistors and pixel circuits for elastic organic light-emitting diode displays. Appl Phys Lett 86:033504

    Article  Google Scholar 

  293. Ahn JH, Kim HS, Lee KJ, Zhu ZT, Menard E, Nuzzo RG, Rogers JA (2006) High-speed mechanically flexible single-crystal silicon thin-film transistors on plastic substrates. IEEE Electron Device Lett 27:460–462

    Article  Google Scholar 

  294. Sun L, Qin GX, Seo JH, Celler GK, Zhou WD, Ma ZQ (2010) 12-GHz thin-film transistors on transferrable silicon nanomembranes for high-performance flexible electronics. Small 6:2553–2557

    Article  Google Scholar 

  295. Lee SK, Jang H, Hasan M, Koo JB, Ahn JH (2010) Mechanically flexible thin film transistors and logic gates on plastic substrates by use of single-crystal silicon wires from bulk wafers. Appl Phys Lett 96:173501

    Article  Google Scholar 

  296. Cao Q, Hur SH, Zhu ZT, Sun YG, Wang CJ, Meitl MA, Shim M, Rogers JA (2006) Highly bendable, transparent thin-film transistors that use carbon-nanotube-based conductors and semiconductors with elastomeric dielectrics. Adv Mater 18:304–309

    Article  Google Scholar 

  297. Yu WJ, Lee SY, Chae SH, Perello D, Han GH, Yun M, Lee YH (2011) Small hysteresis nanocarbon-based integrated circuits on flexible and transparent plastic substrate. Nano Lett 11:1344–1350

    Article  Google Scholar 

  298. De Arco LG, Zhang Y, Schlenker CW, Ryu K, Thompson ME, Zhou CW (2010) Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano 4:2865–2873

    Article  Google Scholar 

  299. Yoon J, Baca AJ, Park SI, Elvikis P, Geddes JB, Li LF, Kim RH, Xiao JL, Wang SD, Kim TH, Motala MJ, Ahn BY, Duoss EB, Lewis JA, Nuzzo RG, Ferreira PM, Huang YG, Rockett A, Rogers JA (2008) Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs. Nat Mater 7:907–915

    Article  Google Scholar 

  300. Jiang CY, Sun XW, Tan KW, Lo GQ, Kyaw AKK, Kwong DL (2008) High-bendability flexible dye-sensitized solar cell with a nanoparticle-modified ZnO-nanowire electrode. Appl Phys Lett 92:143101

    Article  Google Scholar 

  301. Sun L, Qin GX, Huang H, Zhou H, Behdad N, Zhou WD, Ma ZQ (2010) Flexible high-frequency microwave inductors and capacitors integrated on a polyethylene terephthalate substrate. Appl Phys Lett 96:013509

    Article  Google Scholar 

  302. El-Kady MF, Strong V, Dubin S, Kaner RB (2012) Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335:1326–1330

    Article  Google Scholar 

  303. Meng YN, Zhao Y, Hu CG, Cheng HH, Hu Y, Zhang ZP, Shi GQ, Qu LT (2013) All-graphene core-sheath microfibers for all-solid-state, stretchable fibriform supercapacitors and wearable electronic textiles. Adv Mater 25:2326–2331

    Article  Google Scholar 

  304. Yang ZB, Deng J, Chen XL, Ren J, Peng HS (2013) A highly stretchable, fiber-shaped supercapacitor. Angew Chem Int Ed 52:13453–13457

    Article  Google Scholar 

  305. Chen T, Peng HS, Durstock M, Dai LM (2014) High-performance transparent and stretchable all-solid supercapacitors based on highly aligned carbon nanotube sheets. Sci Rep 4:3612

    Google Scholar 

  306. Jost K, Stenger D, Perez CR, McDonough JK, Lian K, Gogotsi Y, Dion G (2013) Knitted and screen printed carbon-fiber supercapacitors for applications in wearable electronics. Energy Environ Sci 6:2698–2705

    Article  Google Scholar 

  307. Xu S, Qin Y, Xu C, Wei YG, Yang RS, Wang ZL (2010) Self-powered nanowire devices. Nat Nanotechnol 5:366–373

    Article  Google Scholar 

  308. Shepard JF, Chu F, Kanno I, Trolier-McKinstry S (1999) Characterization and aging response of the d(31) piezoelectric coefficient of lead zirconate titanate thin films. J Appl Phys 85:6711–6716

    Article  Google Scholar 

  309. Hiralal P, Imaizumi S, Unalan HE, Matsumoto H, Minagawa M, Rouvala M, Tanioka A, Amaratunga GAJ (2010) Nanomaterial-enhanced all-solid flexible zinc-carbon batteries. ACS Nano 4:2730–2734

    Article  Google Scholar 

  310. Gaikwad AM, Chu HN, Qeraj R, Zamarayeva AM, Steingart DA (2013) Reinforced electrode architecture for a flexible battery with paperlike characteristics. Energy Technol 1:177–185

    Article  Google Scholar 

  311. Gaikwad AM, Whiting GL, Steingart DA, Arias AC (2011) Highly flexible, printed alkaline batteries based on mesh-embedded electrodes. Adv Mater 23:3251–3255

    Article  Google Scholar 

  312. Wang ZQ, Wu ZQ, Bramnik N, Mitra S (2014) Fabrication of high-performance flexible alkaline batteries by implementing multiwalled carbon nanotubes and copolymer separator. Adv Mater 26:970–976

    Article  Google Scholar 

  313. Wang ZQ, Bramnik N, Roy S, Di Benedetto G, Zunino JL, Mitra S (2013) Flexible zinc-carbon batteries with multiwalled carbon nanotube/conductive polymer cathode matrix. J Power Sources 237:210–214

    Article  Google Scholar 

  314. Noerochim L, Wang JZ, Chou SL, Wexler D, Liu HK (2012) Free-standing single-walled carbon nanotube/SnO2 anode paper for flexible lithium-ion batteries. Carbon 50:1289–1297

    Article  Google Scholar 

  315. Choi KH, Cho SJ, Kim SH, Kwon YH, Kim JY, Lee SY (2014) Thin, deformable, and safety-reinforced plastic crystal polymer electrolytes for high-performance flexible lithium-ion batteries. Adv Funct Mater 24:44–52

    Article  Google Scholar 

  316. Liu B, Zhang J, Wang XF, Chen G, Chen D, Zhou CW, Shen GZ (2012) Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Lett 12:3005–3011

    Article  Google Scholar 

  317. Li N, Chen ZP, Ren WC, Li F, Cheng HM (2012) Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates. Proc Natl Acad Sci 109:17360–17365

    Article  Google Scholar 

  318. Kwon YH, Woo SW, Jung HR, Yu HK, Kim K, Oh BH, Ahn S, Lee SY, Song SW, Cho J, Shin HC, Kim JY (2012) Cable-type flexible lithium ion battery based on hollow multi-helix electrodes. Adv Mater 24:5192–5197

    Article  Google Scholar 

  319. Koo M, Park KI, Lee SH, Suh M, Jeon DY, Choi JW, Kang K, Lee KJ (2012) Bendable inorganic thin-film battery for fully flexible electronic systems. Nano Lett 12:4810–4816

    Article  Google Scholar 

  320. Jeong GS, Baek DH, Jung HC, Song JH, Moon JH, Hong SW, Kim IY, Lee SH (2012) Solderable and electroplatable flexible electronic circuit on a porous stretchable elastomer. Nat Commun 3:977

    Article  Google Scholar 

  321. Zhang Z, Guo K, Li Y, Li X, Guan G, Li H, Luo Y, Zhao F, Zhang Q, Wei B, Pei QB, Peng HS (2015) A colour-tunable, weavable fibre-shaped polymer light-emitting electrochemical cell. Nat Photonics 9:233–238

    Article  Google Scholar 

  322. Cho H, Yun C, Park JW, Yoo S (2009) Highly flexible organic light-emitting diodes based on ZnS/Ag/WO3 multilayer transparent electrodes. Org Electron 10:1163–1169

    Article  Google Scholar 

  323. Paetzold R, Heuser K, Henseler D, Roeger S, Wittmann G, Winnacker A (2003) Performance of flexible polymeric light-emitting diodes under bending conditions. Appl Phys Lett 82:3342–3344

    Article  Google Scholar 

  324. Han TH, Lee Y, Choi MR, Woo SH, Bae SH, Hong BH, Ahn JH, Lee TW (2012) Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nat Photonics 6:105–110

    Article  Google Scholar 

  325. Li L, Yu ZB, Hu WL, Chang CH, Chen Q, Pei QB (2011) Efficient flexible phosphorescent polymer light-emitting diodes based on silver nanowire-polymer composite electrode. Adv Mater 23:5563–5567

    Article  Google Scholar 

  326. Lee CH, Kim YJ, Hong YJ, Jeon SR, Bae S, Hong BH, Yi GC (2011) Flexible inorganic nanostructure light-emitting diodes fabricated on graphene films. Adv Mater 23:4614–4619

    Article  Google Scholar 

  327. Lee SY, Park KI, Huh C, Koo M, Yoo HG, Kim S, Ah CS, Sung GY, Lee KJ (2012) Water-resistant flexible GaN LED on a liquid crystal polymer substrate for implantable biomedical applications. Nano Energy 1:145–151

    Article  Google Scholar 

  328. Yun J, Cho K, Park B, Park BH, Kim S (2009) Resistance switching memory devices constructed on plastic with solution-processed titanium oxide. J Mater Chem 19:2082–2085

    Article  Google Scholar 

  329. Yu AD, Kurosawa T, Lai YC, Higashihara T, Ueda M, Liu CL, Chen WC (2012) Flexible polymer memory devices derived from triphenylamine-pyrene containing donor-acceptor polyimides. J Mater Chem 22:20754–20763

    Article  Google Scholar 

  330. Zhou Y, Han ST, Xu ZX, Roy VAL (2012) Low voltage flexible nonvolatile memory with gold nanoparticles embedded in poly(methyl methacrylate). Nanotechnology 23:344014

    Article  Google Scholar 

  331. Zhou Y, Han ST, Xu ZX, Roy VAL (2013) The strain and thermal induced tunable charging phenomenon in low power flexible memory arrays with a gold nanoparticle monolayer. Nanoscale 5:1972–1979

    Article  Google Scholar 

  332. Jung S, Kong J, Song S, Lee K, Lee T, Hwang H, Jeon S (2011) Flexible resistive random access memory using solution-processed TiOx with Al top electrode on Ag layer-inserted indium-zinc-tin-oxide-coated polyethersulfone substrate. Appl Phys Lett 99:142110

    Article  Google Scholar 

  333. Ji Y, Lee S, Cho B, Song S, Lee T (2011) Flexible organic memory devices with multilayer graphene electrodes. ACS Nano 5:5995–6000

    Article  Google Scholar 

  334. Kim SM, Song EB, Lee S, Zhu JF, Seo DH, Mecklenburg M, Seo S, Wang KL (2012) Transparent and flexible graphene charge-trap memory. ACS Nano 6:7879–7884

    Article  Google Scholar 

  335. Kim S, Jeong HY, Kim SK, Choi SY, Lee KJ (2011) Flexible memristive memory array on plastic substrates. Nano Lett 11:5438–5442

    Article  Google Scholar 

  336. Jeong HY, Kim JY, Kim JW, Hwang JO, Kim JE, Lee JY, Yoon TH, Cho BJ, Kim SO, Ruoff RS, Choi SY (2010) Graphene oxide thin films for flexible nonvolatile memory applications. Nano Lett 10:4381–4386

    Article  Google Scholar 

  337. Kim SJ, Lee JS (2010) Flexible organic transistor memory devices. Nano Lett 10:2884–2890

    Article  Google Scholar 

  338. Hwang SK, Bae I, Kim RH, Park C (2012) Flexible non-volatile ferroelectric polymer memory with gate-controlled multilevel operation. Adv Mater 24:5910–5914

    Article  Google Scholar 

  339. Yu WJ, Chae SH, Lee SY, Duong DL, Lee YH (2011) Ultra-transparent, flexible single-walled carbon nanotube non-volatile memory device with an oxygen-decorated graphene electrode. Adv Mater 23:1889–1893

    Article  Google Scholar 

  340. Ji Y, Cho B, Song S, Kim TW, Choe M, Kahng YH, Lee T (2010) Stable switching characteristics of organic nonvolatile memory on a bent flexible substrate. Adv Mater 22:3071–3075

    Article  Google Scholar 

  341. Kim WY, Lee HC (2012) Stable ferroelectric poly(vinylidene fluoride-trifluoroethylene) film for flexible nonvolatile memory application. IEEE Electron Device Lett 33:260–262

    Article  Google Scholar 

  342. Lee S, Kim H, Yun DJ, Rhee SW, Yong K (2009) Resistive switching characteristics of ZnO thin film grown on stainless steel for flexible nonvolatile memory devices. Appl Phys Lett 95:262113

    Article  Google Scholar 

  343. Lee MH, Yun DY, Park HM, Kim TW (2011) Flexible organic bistable devices based on [6,6]-phenyl-C85 butyric acid methyl ester clusters embedded in a polymethyl methacrylate layer. Appl Phys Lett 99:183301

    Article  Google Scholar 

  344. Han ST, Zhou Y, Xu ZX, Huang LB, Yang XB, Roy VAL (2012) Microcontact printing of ultrahigh density gold nanoparticle monolayer for flexible flash memories. Adv Mater 24:3556–3561

    Article  Google Scholar 

  345. Jun JH, Cho K, Yun J, Kim S (2011) Switching memory cells constructed on plastic substrates with silver selenide nanoparticles. J Mater Sci 46:6767–6771. doi:10.1007/s10853-011-5633-2

    Article  Google Scholar 

  346. Sierros KA, Hecht DS, Banerjee DA, Morris NJ, Hu L, Irvin GC, Lee RS, Cairns DR (2010) Durable transparent carbon nanotube films for flexible device components. Thin Solid Films 518:6977–6983

    Article  Google Scholar 

  347. Takamatsu S, Takahata T, Muraki M, Iwase E, Matsumoto K, Shimoyama I (2010) Transparent conductive-polymer strain sensors for touch input sheets of flexible displays. J Micromech Microeng 20:075017

    Article  Google Scholar 

  348. Wang J, Liang MH, Fang Y, Qiu TF, Zhang J, Zhi LJ (2012) Rod-coating: towards large-area fabrication of uniform reduced graphene oxide films for flexible touch screens. Adv Mater 24:2874–2878

    Article  Google Scholar 

  349. ten Cate AT, Gaspar CH, Virtanen HLK, Stevens RSA, Koldeweij RBJ, Olkkonen JT, Rentrop CHA, Smolander MH (2014) Printed electronic switch on flexible substrates using printed microcapsules. J Mater Sci 49:5831–5837. doi:10.1007/s10853-014-8271-7

    Article  Google Scholar 

  350. Lin CP, Chang CH, Cheng YT, Jou CF (2011) Development of a flexible SU-8/PDMS-based antenna. IEEE Antennas Wirel Propag Lett 10:1108–1111

    Article  Google Scholar 

  351. Khaleel HR, Al-Rizzo HM, Rucker DG, Mohan S (2012) A compact polyimide-based UWB antenna for flexible electronics. IEEE Antennas Wirel Propag Lett 11:564–567

    Article  Google Scholar 

  352. Chameswary J, Sebastian MT (2015) Preparation and properties of BaTiO3 filled butyl rubber composites for flexible electronic circuit applications. J Mater Sci 26:4629–4637. doi:10.1007/s10854-015-2879-5

    Google Scholar 

  353. Graz IM, Lacour SP (2009) Flexible pentacene organic thin film transistor circuits fabricated directly onto elastic silicone membranes. Appl Phys Lett 95:243305

    Article  Google Scholar 

  354. Xu F, Zhu Y (2012) Highly conductive and stretchable silver nanowire conductors. Adv Mater 24:5117–5122

    Article  Google Scholar 

  355. Das NC, Chaki TK, Khastgir D (2002) Effect of axial stretching on electrical resistivity of short carbon fibre and carbon black filled conductive rubber composites. Polym Int 51:156–163

    Article  Google Scholar 

  356. Hansen TS, West K, Hassager O, Larsen NB (2007) Highly stretchable and conductive polymer material made from poly (3,4-ethylenedioxythiophene) and polyurethane elastomers. Adv Funct Mater 17:3069–3073

    Article  Google Scholar 

  357. Oh KW, Park HJ, Kim SH (2003) Stretchable conductive fabric for electrotherapy. J Appl Polym Sci 88:1225–1229

    Article  Google Scholar 

  358. Hsu YY, Gonzalez M, Bossuyt F, Vanfleteren J, De Wolf I (2011) Polyimide-enhanced stretchable interconnects: design, fabrication, and characterization. IEEE Trans Electron Devices 58:2680–2688

    Article  Google Scholar 

  359. Yu ZB, Niu XF, Liu ZT, Pei QB (2011) Intrinsically stretchable polymer light-emitting devices using carbon nanotube-polymer composite electrodes. Adv Mater 23:3989–3994

    Article  Google Scholar 

  360. Sekitani T, Noguchi Y, Hata K, Fukushima T, Aida T, Someya T (2008) A rubberlike stretchable active matrix using elastic conductors. Science 321:1468–1472

    Article  Google Scholar 

  361. Lee P, Lee J, Lee H, Yeo J, Hong S, Nam KH, Lee D, Lee SS, Ko SH (2012) Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network. Adv Mater 24:3326–3332

    Article  Google Scholar 

  362. Graz IM, Cotton DPJ, Lacour SP (2009) Extended cyclic uniaxial loading of stretchable gold thin-films on elastomeric substrates. Appl Phys Lett 94:071902

    Article  Google Scholar 

  363. Bossuyt F, Vervust T, Vanfleteren J (2013) Stretchable electronics technology for large area applications: fabrication and mechanical characterization. IEEE Trans Compon Packag Manuf Technol 3:229–235

    Article  Google Scholar 

  364. Akter T, Kim WS (2012) Reversibly stretchable transparent conductive coatings of spray-deposited silver nanowires. ACS Appl Mater Interfaces 4:1855–1859

    Article  Google Scholar 

  365. Lipomi DJ, Lee JA, Vosgueritchian M, Tee BCK, Bolander JA, Bao ZA (2012) Electronic properties of transparent conductive films of PEDOT:PSS on stretchable substrates. Chem Mater 24:373–382

    Article  Google Scholar 

  366. Hauger TC, Zeberoff A, Worfolk BJ, Elias AL, Harris KD (2014) Real-time resistance, transmission and figure-of-merit analysis for transparent conductors under stretching-mode strain. Sol Energy Mater Sol Cells 124:247–255

    Article  Google Scholar 

  367. Keplinger C, Sun JY, Foo CC, Rothemund P, Whitesides GM, Suo ZG (2013) Stretchable, transparent, ionic conductors. Science 341:984–987

    Article  Google Scholar 

  368. Cairns DR, Witte RP, Sparacin DK, Sachsman SM, Paine DC, Crawford GP, Newton RR (2000) Strain-dependent electrical resistance of tin-doped indium oxide on polymer substrates. Appl Phys Lett 76:1425–1427

    Article  Google Scholar 

  369. Azar AD, Finley E, Harris KD (2015) Instrument for evaluating the electrical resistance and wavelength-resolved transparency of stretchable electronics during strain. Rev Sci Instrum 86:013901

    Article  Google Scholar 

  370. Kaltenbrunner M, White MS, Glowacki ED, Sekitani T, Someya T, Sariciftci NS, Bauer S (2012) Ultrathin and lightweight organic solar cells with high flexibility. Nat Commun 3:770

    Article  Google Scholar 

  371. Lee J, Wu JA, Shi MX, Yoon J, Park SI, Li M, Liu ZJ, Huang YG, Rogers JA (2011) Stretchable GaAs photovoltaics with designs that enable high areal coverage. Adv Mater 23:986–991

    Article  Google Scholar 

  372. Lipomi DJ, Tee BCK, Vosgueritchian M, Bao ZN (2011) Stretchable organic solar cells. Adv Mater 23:1771–1775

    Article  Google Scholar 

  373. Yang ZB, Deng J, Sun XM, Li HP, Peng HS (2014) Stretchable, wearable dye-sensitized solar cells. Adv Mater 26:2643–2647

    Article  Google Scholar 

  374. Graz IM, Cotton DPJ, Robinson A, Lacour SP (2011) Silicone substrate with in situ strain relief for stretchable thin-film transistors. Appl Phys Lett 98:124101

    Article  Google Scholar 

  375. Khang DY, Jiang HQ, Huang Y, Rogers JA (2006) A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 311:208–212

    Article  Google Scholar 

  376. Kaltenbrunner M, Sekitani T, Reeder J, Yokota T, Kuribara K, Tokuhara T, Drack M, Schwodiauer R, Graz I, Bauer-Gogonea S, Bauer S, Someya T (2013) An ultra-lightweight design for imperceptible plastic electronics. Nature 499:458–463

    Article  Google Scholar 

  377. Someya T, Kato Y, Sekitani T, Iba S, Noguchi Y, Murase Y, Kawaguchi H, Sakurai T (2005) Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc Natl Acad Sci 102:12321–12325

    Article  Google Scholar 

  378. Chae SH, Yu WJ, Bae JJ, Duong DL, Perello D, Jeong HY, Ta QH, Ly TH, Vu QA, Yun M, Duan XF, Lee YH (2013) Transferred wrinkled Al2O3 for highly stretchable and transparent graphene-carbon nanotube transistors. Nat Mater 12:403–409

    Article  Google Scholar 

  379. Yu CJ, Masarapu C, Rong JP, Wei BQ, Jiang HQ (2009) Stretchable supercapacitors based on buckled single-walled carbon nanotube macrofilms. Adv Mater 21:4793–4797

    Article  Google Scholar 

  380. Chen T, Hao R, Peng HS, Dai LM (2015) High-performance, stretchable, wire-shaped supercapacitors. Angew Chem Int Ed 54:618–622

    Google Scholar 

  381. Kim D, Shin G, Kang YJ, Kim W, Ha JS (2013) Fabrication of a stretchable solid-state micro-supercapacitor array. ACS Nano 7:7975–7982

    Article  Google Scholar 

  382. Niu ZQ, Dong HB, Zhu BW, Li JZ, Hng HH, Zhou WY, Chen XD, Xie SS (2013) Highly stretchable, integrated supercapacitors based on single-walled carbon nanotube films with continuous reticulate architecture. Adv Mater 25:1058–1064

    Article  Google Scholar 

  383. Yue BB, Wang CY, Ding X, Wallace GG (2012) Polypyrrole coated nylon lycra fabric as stretchable electrode for supercapacitor applications. Electrochim Acta 68:18–24

    Article  Google Scholar 

  384. Yun TG, Oh M, Hu LB, Hyun S, Han SM (2013) Enhancement of electrochemical performance of textile based supercapacitor using mechanical pre-straining. J Power Sources 244:783–791

    Article  Google Scholar 

  385. Chen T, Xue YH, Roy AK, Dai LM (2014) Transparent and stretchable high-performance supercapacitors based on wrinkled graphene electrodes. ACS Nano 8:1039–1046

    Article  Google Scholar 

  386. Gaikwad AM, Zamarayeva AM, Rousseau J, Chu HW, Derin I, Steingart DA (2012) Highly stretchable alkaline batteries based on an embedded conductive fabric. Adv Mater 24:5071–5076

    Article  Google Scholar 

  387. Kaltenbrunner M, Kettlgruber G, Siket C, Schwodiauer R, Bauer S (2010) Arrays of ultracompliant electrochemical dry gel cells for stretchable electronics. Adv Mater 22:2065–2067

    Article  Google Scholar 

  388. Kettlgruber G, Kaltenbrunner M, Siket CM, Moser R, Graz IM, Schwodiauer R, Bauer S (2013) Intrinsically stretchable and rechargeable batteries for self-powered stretchable electronics. J Mater Chem A 1:5505–5508

    Article  Google Scholar 

  389. Wang CY, Zheng W, Yue ZL, Too CO, Wallace GG (2011) Buckled, stretchable polypyrrole electrodes for battery applications. Adv Mater 23:3580–3584

    Article  Google Scholar 

  390. Yan CY, Wang X, Cui MQ, Wang JX, Kang WB, Foo CY, Lee PS (2014) Stretchable silver-zinc batteries based on embedded nanowire elastic conductors. Adv Energy Mater 4:1301396

    Google Scholar 

  391. Zhu GA, Yang RS, Wang SH, Wang ZL (2010) Flexible high-output nanogenerator based on lateral ZnO nanowire array. Nano Lett 10:3151–3155

    Article  Google Scholar 

  392. Liang JJ, Li L, Niu XF, Yu ZB, Pei QB (2013) Elastomeric polymer light-emitting devices and displays. Nat Photonics 7:817–824

    Article  Google Scholar 

  393. So JH, Thelen J, Qusba A, Hayes GJ, Lazzi G, Dickey MD (2009) Reversibly deformable and mechanically tunable fluidic antennas. Adv Funct Mater 19:3632–3637

    Article  Google Scholar 

  394. Cheng S, Wu ZG (2010) Microfluidic stretchable RF electronics. Lab Chip 10:3227–3234

    Article  Google Scholar 

  395. Huang YA, Wang YZ, Xiao L, Liu HM, Dong WT, Yin ZP (2014) Microfluidic serpentine antennas with designed mechanical tunability. Lab Chip 14:4205–4212

    Article  Google Scholar 

  396. Park M, Im J, Shin M, Min Y, Park J, Cho H, Park S, Shim MB, Jeon S, Chung DY, Bae J, Park J, Jeong U, Kim K (2012) Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres. Nat Nanotechnol 7:803–809

    Article  Google Scholar 

  397. Cheng S, Rydberg A, Hjort K, Wu ZG (2009) Liquid metal stretchable unbalanced loop antenna. Appl Phys Lett 94:144103

    Article  Google Scholar 

  398. Song LN, Myers AC, Adams JJ, Zhu Y (2014) Stretchable and reversibly deformable radio frequency antennas based on silver nanowires. ACS Appl Mater Interfaces 6:4248–4253

    Article  Google Scholar 

  399. Cheng S, Wu ZG, Hallbjorner P, Hjort K, Rydberg A (2009) Foldable and stretchable liquid metal planar inverted cone antenna. IEEE Trans Antennas Propag 57:3765–3771

    Article  Google Scholar 

  400. Jeong SH, Hagman A, Hjort K, Jobs M, Sundqvist J, Wu ZG (2012) Liquid alloy printing of microfluidic stretchable electronics. Lab Chip 12:4657–4664

    Article  Google Scholar 

  401. Li MFF, Li HY, Zhong WB, Zhao QH, Wang D (2014) Stretchable conductive polypyrrole/polyurethane (PPy/PU) strain sensor with netlike microcracks for human breath detection. ACS Appl Mater Interfaces 6:1313–1319

    Article  Google Scholar 

  402. Lee YC, Liu TS (2014) Deformation of multilayer flexible electronics subjected to torque. Exp Tech 38:13–20

    Article  Google Scholar 

  403. Lederman SJ, Taylor MM (1972) Fingertip force, surface geometry, and perception of roughness by active touch. Percept Psychophys 12:401–408

    Article  Google Scholar 

  404. Zysset C, Kinkeldei TW, Munzenrieder N, Cherenack K, Troster G (2012) Integration method for electronics in woven textiles. IEEE Trans Compon Packag Manuf Technol 2:1107–1117

    Article  Google Scholar 

  405. Su Y, Wu J, Fan Z, Hwang K-C, Huang Y, Rogers JA (2013) Mechanics of twistable electronics. Stretchable Electronics. Wiley-VCH, Weinheim, pp 31–39

    Google Scholar 

  406. Chen Q, Xu L, Salo A, Neto G, Freitas G (2008) Reliability study of flexible display module by experiments. Int Conf Electron Packag Technol High Density Packag 1–2:1086–1091

    Google Scholar 

  407. Chen Q, Xu L, Salo A, Neto G, Freitas G (2008) Reliability of flexible display by simulation and strain gauge test. In: 10th electronics packaging technology conference 1–3, pp 322–327

  408. Zeberoff A (2013) Remote activation of a microactuator using a photo-responsive nanoparticle-polymer composite. M.Sc. Thesis, University of Alberta

  409. Cordill MJ, Bahr DF, Moody NR, Gerberich WW (2004) Recent developments in thin film adhesion measurement. IEEE Trans Device Mater Reliab 4:163–168

    Article  Google Scholar 

  410. Zhu R, Chung CH, Cha KC, Yang WB, Zheng YB, Zhou HP, Song TB, Chen CC, Weiss PS, Li G, Yang Y (2011) Fused silver nanowires with metal oxide nanoparticles and organic polymers for highly transparent conductors. ACS Nano 5:9877–9882

    Article  Google Scholar 

  411. Liu CH, Yu X (2011) Silver nanowire-based transparent, flexible, and conductive thin film. Nanoscale Res Lett 6:75

    Article  Google Scholar 

  412. Li XK, Gittleson F, Carmo M, Sekol RC, Taylor AD (2012) Scalable fabrication of multifunctional freestanding carbon nanotube/polymer composite thin films for energy conversion. ACS Nano 6:1347–1356

    Article  Google Scholar 

  413. Gaikwad AM, Steingart DA, Ng TN, Schwartz DE, Whiting GL (2013) A flexible high potential printed battery for powering printed electronics. Appl Phys Lett 102:233302

    Article  Google Scholar 

  414. Covarel G, Bensaid B, Boddaert X, Giljean S, Benaben P, Louis P (2012) Characterization of organic ultra-thin film adhesion on flexible substrate using scratch test technique. Surf Coat Technol 211:138–142

    Article  Google Scholar 

  415. Amendola E, Cammarano A, Pezzuto M, Acierno D (2009) Adhesion of functional layer on polymeric substrates for optoelectronic applications. J Eur Opt Soc 4:09027

    Article  Google Scholar 

  416. Dupont SR, Novoa F, Voroshazi E, Dauskardt RH (2014) Decohesion kinetics of PEDOT:PSS conducting polymer films. Adv Funct Mater 24:1325–1332

    Article  Google Scholar 

  417. Dupont SR, Voroshazi E, Heremans P, Dauskardt RH (2013) Adhesion properties of inverted polymer solarcells: processing and film structure parameters. Org Electron 14:1262–1270

    Article  Google Scholar 

  418. Dupont SR, Oliver M, Krebs FC, Dauskardt RH (2012) Interlayer adhesion in roll-to-roll processed flexible inverted polymer solar cells. Sol Energy Mater Sol Cells 97:171–175

    Article  Google Scholar 

  419. Sierros KA, Banerjee DA, Morris NJ, Cairns DR, Kortidis I, Kiriakidis G (2010) Mechanical properties of ZnO thin films deposited on polyester substrates used in flexible device applications. Thin Solid Films 519:325–330

    Article  Google Scholar 

  420. Liu ZH, Pan CT, Chen YC, Liang PH (2013) Interfacial characteristics of polyethylene terephthalate-based piezoelectric multi-layer films. Thin Solid Films 531:284–293

    Article  Google Scholar 

  421. Liu Y, Guo C-F, Huang S, Sun T, Wang Y, Ren Z (2015) A new method for fabricating ultrathin metal films as scratch-resistant flexible transparent electrodes. J Materiomics 1:52–59

    Article  Google Scholar 

  422. Huang Y, Feng X, Qu BR (2011) Slippage toughness measurement of soft interface between stiff thin films and elastomeric substrate. Rev Sci Instrum 82:104704

    Article  Google Scholar 

  423. Tummala NR, Bruner C, Risko C, Bredas J-L, Dauskardt RH (2015) Molecular-scale understanding of cohesion and fracture in P3HT:fullerene blends. ACS Appl Mater Interfaces 7:9957–9964

    Article  Google Scholar 

  424. Islam RA, Chan YC, Ralph B (2004) Effect of drop impact energy on contact resistance of anisotropic conductive adhesive film joints. J Mater Res 19:1662–1668

    Article  Google Scholar 

  425. Yanaka M, Tsukahara Y, Nakaso N, Takeda N (1998) Cracking phenomena of brittle films in nanostructure composites analysed by a modified shear lag model with residual strain. J Mater Sci 33:2111–2119. doi:10.1023/A:1004371203514

    Article  Google Scholar 

  426. Rogers JA, Lagally MG, Nuzzo RG (2011) Synthesis, assembly and applications of semiconductor nanomembranes. Nature 477:45–53

    Article  Google Scholar 

  427. Roberts MM, Klein LJ, Savage DE, Slinker KA, Friesen M, Celler G, Eriksson MA, Lagally MG (2006) Elastically relaxed free-standing strained-silicon nanomembranes. Nat Mater 5:388–393

    Article  Google Scholar 

  428. Li XL (2008) Strain induced semiconductor nanotubes: from formation process to device applications. J Phys D Appl Phys 41:193001

    Article  Google Scholar 

  429. Prinz VY, Seleznev VA, Gutakovsky AK, Chehovskiy AV, Preobrazhenskii VV, Putyato MA, Gavrilova TA (2000) Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and their arrays. Physica E 6:828–831

    Article  Google Scholar 

  430. Schmidt OG, Eberl K (2001) Nanotechnology—thin solid films roll up into nanotubes. Nature 410:168

    Article  Google Scholar 

  431. Rogers JA, Huang YG (2009) A curvy, stretchy future for electronics. Proc Natl Acad Sci 106:10875–10876

    Article  Google Scholar 

  432. Mei HX, Huang R, Chung JY, Stafford CM, Yu HH (2007) Buckling modes of elastic thin films on elastic substrates. Appl Phys Lett 90:151902

    Article  Google Scholar 

  433. Feng X, Yang BD, Liu YM, Wang Y, Dagdeviren C, Liu ZJ, Carlson A, Li JY, Huang YG, Rogers JA (2011) Stretchable ferroelectric nanoribbons with wavy configurations on elastomeric substrates. ACS Nano 5:3326–3332

    Article  Google Scholar 

  434. Duan XF, Niu CM, Sahi V, Chen J, Parce JW, Empedocles S, Goldman JL (2003) High-performance thin-film transistors using semiconductor nanowires and nanoribbons. Nature 425:274–278

    Article  Google Scholar 

  435. Bertolazzi S, Krasnozhon D, Kis A (2013) Nonvolatile memory cells based on MoS2/graphene heterostructures. ACS Nano 7:3246–3252

    Article  Google Scholar 

  436. Eda G, Fanchini G, Chhowalla M (2008) Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol 3:270–274

    Article  Google Scholar 

  437. Lee J, Wu J, Ryu JH, Liu ZJ, Meitl M, Zhang YW, Huang YG, Rogers JA (2012) Stretchable semiconductor technologies with high areal coverages and strain-limiting behavior: demonstration in high-efficiency dual-junction GaInP/GaAs photovoltaics. Small 8:1851–1856

    Article  Google Scholar 

  438. Rogers JA, Someya T, Huang YG (2010) Materials and mechanics for stretchable electronics. Science 327:1603–1607

    Article  Google Scholar 

  439. Lacour SP, Wagner S, Narayan RJ, Li T, Suo ZG (2006) Stiff subcircuit islands of diamondlike carbon for stretchable electronics. J Appl Phys 100:014913

    Article  Google Scholar 

  440. Aarts AAA, Srivannavit O, Wise KD, Yoon E, Puers R, Van Hoof C, Neves HP (2011) Fabrication technique of a compressible biocompatible interconnect using a thin film transfer process. J Micromech Microeng 21:074012

    Article  Google Scholar 

  441. Vanfleteren J, Gonzalez M, Bossuyt F, Hsu YY, Vervust T, De Wolf I, Jablonski M (2012) Printed circuit board technology inspired stretchable circuits. MRS Bull 37:254–260

    Article  Google Scholar 

  442. Tian BZ, Liu J, Dvir T, Jin LH, Tsui JH, Qing Q, Suo ZG, Langer R, Kohane DS, Lieber CM (2012) Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nat Mater 11:986–994

    Article  Google Scholar 

  443. Sun JY, Zhao XH, Illeperuma WRK, Chaudhuri O, Oh KH, Mooney DJ, Vlassak JJ, Suo ZG (2012) Highly stretchable and tough hydrogels. Nature 489:133–136

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. D. Harris.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harris, K.D., Elias, A.L. & Chung, HJ. Flexible electronics under strain: a review of mechanical characterization and durability enhancement strategies. J Mater Sci 51, 2771–2805 (2016). https://doi.org/10.1007/s10853-015-9643-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9643-3

Keywords

Navigation