Skip to main content
Log in

Switching memory cells constructed on plastic substrates with silver selenide nanoparticles

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Programmable metallization cell (PMC) memory is a kind of next generation non-volatile memory that has attracted increasing attention in recent years as a possible replacement for flash memory. In spite of the considerable amount of research focused on the fabrication of non-volatile memories on plastic substrates with lightweight, thin, and bendable characteristics, there have been few studies on the fabrication of PCM memory on flexible substrates. In this study, we synthesized Ag2Se nanoparticles (NPs) by a positive-microemulsion method and constructed PMC memories on plastic substrates with programmable layers formed by the spin-coating of the Ag2Se NPs. To the best of the knowledge, this is the first attempt to construct PMC memory on plastic substrates by the spin-coating of Ag2Se NPs. The Ag2Se NPs synthesized in this study had a uniform size of 2 nm and interestingly showed α-phase (high temperature phase) stability at room temperature. Switching behaviors were observed through the voltage scanning on the fabricated memories with applicable switching voltages. However, the resistance ratios of the off-state to the on-state were quite small. The possible reasons for the α-phase stability of the Ag2Se NPs at room temperature and the detailed memory characteristics will be described in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bernede J-C (1980) Phys Stat Sol a 57:K101

    Article  CAS  Google Scholar 

  2. Kozicki MN, Park M, Mitkova M (2005) IEEE Trans Nanotechnol 4:331

    Article  Google Scholar 

  3. Banno N, Sakamoto T, Hasegawa T, Terabe K, Aono M (2006) Jpn J Appl Phys 45:3666

    Article  CAS  Google Scholar 

  4. Choi H, Nam K-H, Koo Y-W, Chung H-B (2009) J Electroceram 23:322

    Article  CAS  Google Scholar 

  5. Tamura T, Hasegawa T, Terabe K, Nakayama T, Sakamoto T, Sunamura H, Kawaure H, Hosaka S, Aono M (2007) J Phys Conf Ser 61:1157

    Article  CAS  Google Scholar 

  6. Bernede J-C, Conan A, Fouesnant E, Bouchairi B, Goureaux G (1982) Thin Solid Films 97:165

    Article  CAS  Google Scholar 

  7. Wang H, Qi L (2008) Adv Funct Mater 18:1249

    Article  Google Scholar 

  8. Dalven R, Gill R (1967) Phys Rev 159:645

    Article  CAS  Google Scholar 

  9. Boolchand P, Bresser WJ (2001) Nature 410:1070

    Article  CAS  Google Scholar 

  10. Abdullayev AG, Shafizade RB, Krupnikov ES, Kiriluk KV (1983) Thin Solid Films 106:175

    Article  Google Scholar 

  11. An BH, Ji HM, Wu J-H, Cho MK, Yang K-Y, Lee H, Kim YK (2009) Curr Appl Phys 9:1338

    Article  Google Scholar 

  12. Schoen DT, Xie C, Cui Y (2007) J Am Chem Soc 129:4116

    Article  CAS  Google Scholar 

  13. Damodara V, Karunakaran D (1990) J Appl Phys 68:2105

    Article  Google Scholar 

  14. Pejova B, Najdoski M, Grozdanov I, Dey SK (2000) Mater Lett 43:269

    Article  CAS  Google Scholar 

  15. Jun JH, Park B, Cho K, Kim S (2009) Nanotechnology 20:505201

    Article  Google Scholar 

  16. Dimitrakopoulos CD, Malenfant PRL (2002) Adv Mater 14:99

    Article  CAS  Google Scholar 

  17. Jiang CY, Sun XW, Tan KW, Lo GQ, Kyaw AKK, Kwong DL (2008) Appl Phys Lett 92:143101

    Article  Google Scholar 

  18. Jang J, Cho K, Lee SH, Kim S (2008) Nanotechnology 19:015204

    Article  Google Scholar 

  19. Yang Y, Ouyang J, Ma L, Tseng RJ-H, Chu C-W (2006) Adv Funct Mater 16:1001

    Article  CAS  Google Scholar 

  20. Son D-I, Kim J-H, Park D-H, Choi WK, Li F, Ham JH, Kim TW (2008) Nanotechnology 18:055204

    Article  Google Scholar 

  21. Yun J, Cho K, Park B, Park BH, Kim S (2009) J Mater Chem 19:2082

    Article  CAS  Google Scholar 

  22. Baliga SR, Thermadam SCP, Kamalanathan D, Allee DR, Kozicki MN (2007) Proc. Non-Volatile Memory Technology Symp. Albuquerque, NM: IEEE p.86-90

  23. Ge J-P, Xu S, Liu L-P, Li Y-D (2006) Chem Eur J 12:3672

    Article  CAS  Google Scholar 

  24. Ng MT, Boothroyd C, Vittal JJ (2005) Chem Commun 3820

  25. Xiao J, Xie Y, Tang R, Luo W (2002) J Mater Chem 12:1148

    Article  CAS  Google Scholar 

  26. Jiang Y, Xie B, Wu J, Yuan S, Wu Y, Huang H, Qian Y (2002) J Solid State Chem 167:28

    Article  CAS  Google Scholar 

  27. Karakaya I, Thompson WT (1990) Bull Alloy Phase Diagr 11:266

    Article  CAS  Google Scholar 

  28. Günter JR, Keusch P (1993) Ultramicroscopy 49:293

    Article  Google Scholar 

  29. Buschmann V, van Tendeloo G, Monnoyer Ph, Nagy JB (1998) Langmuir 14:1528

    Article  CAS  Google Scholar 

  30. Symanczyk R, Bruchhaus R, Dittrich R, Kund M (2009) IEEE Electron Device Lett 30:876

    Article  CAS  Google Scholar 

  31. Sakamoto T, Kaeriyama S, Mizuno M, Kawaura H, Hasegawa T, Terabe K, Aono M (2008) Electr Eng Jpn 165:68

    Article  Google Scholar 

  32. Hamilton MA, Barnes AC, Howells WS, Fischer HE (2001) J Phys Condens Matter 13:2425

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Future-based Technology Development Program (Nano Fields) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0019197), World Class University (WCU, R32-2008-000-10082-0), IT R&D program of MKE/KEIT (10030559, Development of next generation high performance organic/nano materials and printing process technology), Seoul R&BD Program (PA090914), and Hynix-Korea University Nano-Semiconductor Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangsig Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jun, J.H., Cho, K., Yun, J. et al. Switching memory cells constructed on plastic substrates with silver selenide nanoparticles. J Mater Sci 46, 6767–6771 (2011). https://doi.org/10.1007/s10853-011-5633-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5633-2

Keywords

Navigation