Skip to main content
Log in

Topotaxial reactions during oxidation of ilmenite single crystal

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The mechanism of ilmenite–rutile transformation during oxidation of natural ilmenite crystal was studied at elevated temperatures in air. The progress of oxidation with annealing time was studied in the temperature range between 600 and 900 °C. 2.5 mm cubes were cut from the single Mn-ilmenite crystal in two special orientations, [001]ILM and \( \left[ {1\bar{1}0} \right]_{\text{ILM}} \), that allowed determination of crystallographic relations among the reaction products. Using X-ray diffractometry, energy-dispersive spectroscopy, and electron microscopy (SEM, TEM) techniques, we determined that the ilmenite to rutile and hematite transformation is triggered by surface oxidation of divalent cations (Fe, Mn) from the starting ilmenite and their crystallization in the form of hematite and bixbyite on the surface of the single crystal. Surface oxidation and out-diffusion of Fe2+ and Mn2+ ions opens paths for exsolution of rutile within the pseudo-hexagonal oxygen sublattice of the parent ilmenite, following simple topotaxial orientation relationship \( {\langle{001}\rangle}_{\text{RUT}} \;\left\{ {010} \right\}_{\text{RUT}} \;||\;{\langle{210}\rangle}_{\text{ILM}} \;\left\{ {001} \right\}_{\text{ILM}} \). With this transformation, new channels for fast out-diffusion of divalent cations to the oxidation surface are opened along the c-axis of the rutile structure. The volume difference of the reaction products causes cracking of the single crystal, which opens additional free surfaces for accelerated oxidation. The results of this study contribute to better understanding of the recrystallization processes during pre-oxidation of ilmenite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Murphy P, Frick L (2006) Titanium. In: Kogel JE et al (eds) Industrial minerals and rocks—commodities, markets and uses. Society for Mining Metallurgy, and Exploration, Inc., Colorado, pp 987–1003

    Google Scholar 

  2. Zhang W, Zhu Z, Cheng CY (2011) A literature review of titanium metallurgical processes. Hydrometallurgy 108(3–4):177–188

    Article  Google Scholar 

  3. Xiao W, Lu X, Zou X, Wei X, Ding W (2013) Phase transitions, micro-morphology and its oxidation mechanism in oxidation of ilmenite (FeTiO3) powder. Trans Nonferrous Met Soc China 23(8):2439–2445

    Article  Google Scholar 

  4. Janssen A, Putnis A (2011) Processes of oxidation and HCl-leaching of Tellnes ilmenite. Hydrometallurgy 109(3–4):194–201

    Article  Google Scholar 

  5. Zhang G, Ostrovski O (2002) Effect of preoxidation and sintering on properties of ilmenite concentrates. Int J Miner Process 64(4):201–218

    Article  Google Scholar 

  6. Fu X, Wang Y, Wei F (2010) Phase transitions and reaction mechanism of ilmenite oxidation. Metall Mater Trans A 41(5):1338–1348

    Article  Google Scholar 

  7. Gupta S, Rajakumar V, Grieveson P (1991) Phase transformations during heating of ilmenite concentrates. Metall Trans B 22(5):711–716

    Article  Google Scholar 

  8. Jabłonski M, Przepiera A (2001) Estimation of kinetic parameters of thermal oxidation of ilmenite. J Therm Anal Calorim 66(2):617–622

    Article  Google Scholar 

  9. Karkhanavala MD, Momin AC (1959) The alteration of ilmenite. Econ Geol 54(6):1095–1102

    Article  Google Scholar 

  10. Zhang J, Zhu Q, Xie Z, Lei C, Li H (2013) Morphological changes of panzhihua ilmenite during oxidation treatment. Metall Mater Trans B 44(4):897–905

    Article  Google Scholar 

  11. Bhogeswara Rao D, Rigaud M (1974) Oxidation of ilmenite and the product morphology. High Temp Sci 6:323–341

    Google Scholar 

  12. Bhogeswara Rao D, Rigaud M (1975) Kinetics of the oxidation of ilmenite. Oxid Met 9(1):99–116

    Article  Google Scholar 

  13. Briggs R, Sacco A (1993) The oxidation of ilmenite and its relationship to the FeO–Fe2O3–TiO2 phase diagram at 1073 and 1140 K. Metall Trans A 24(6):1257–1264

    Article  Google Scholar 

  14. Grey IE, Reid AF (1972) Shear structure compounds (Cr,Fe)2Tin−2O2n−1 derived from the α-PbO2 structural type. J Solid State Chem 4(2):186–194

    Article  Google Scholar 

  15. Grey IE, Li C (2001) Low temperature roasting of ilmenite—phase chemistry and applications. AusIMM Proc 306(2):35–42

    Google Scholar 

  16. Dent Glasser LS, Glasser FP, Taylor HFW (1962) Topotactic reactions in inorganic oxy-compounds. Q Rev Chem Soc 16(4):343–360

    Article  Google Scholar 

  17. Armbruster T (1981) On the origin of sagenites: structural coherency of rutile with hematite and spinel structures types. Neues Jahrb Mineral 7:328–334

    Google Scholar 

  18. Force E, Richards P, Scott K, Valentine P, Fishman N (1996) Mineral intergrowths replaced by ‘elbow-twinned’ rutile in altered rocks. Can Miner 34(3):605–614

    Google Scholar 

  19. Daneu N, Schmid H, Rečnik A, Mader W (2007) Atomic structure and formation mechanism of (301) rutile twins from Diamantina (Brazil). Am Miner 92:1789–1799

    Article  Google Scholar 

  20. Daneu N, Rečnik A, Mader W (2014) Atomic structure and formation mechanism of (101) rutile twins from Diamantina (Brazil). Am Mineral 99:612–624

    Article  Google Scholar 

  21. Rečnik A, Stanković N, Daneu N (2015) Topotaxial reactions during the genesis of oriented rutile/hematite intergrowths from Mwinilunga (Zambia). Contributions to Mineralogy and Petrology 169(2): 19/1-22

  22. Wechsler BA, Prewitt CT (1984) Crystal structure of ilmenite (FeTiO3) at high temperature and at high pressure. Am Miner 69:176–185

    Google Scholar 

  23. Kidoh K, Tanaka K, Marumo F (1984) Electron density distribution in ilmenite-type crystals. II. manganese(II) titanium(IV) trioxide. Acta Crystallogr B 40:329–332

    Article  Google Scholar 

  24. Wu X, Qin S, Dubrovinsky L (2010) Structural characterization of the FeTiO3–MnTiO3 solid solution. J Solid State Chem 183:2483–2489

    Article  Google Scholar 

  25. Grant RW, Geller S, Cape JA, Espinosa GP (1968) Magnetic and crystallographic transitions in the α-Mn2O3–Fe2O3 system. Phys Rev 175(2):686–695

    Article  Google Scholar 

  26. Sasaki J, Peterson NL, Hoshino K (1985) Tracer impurity diffusion in single-crystal rutile (TiO2 − x). J Phys Chem Solids 46(11):1267–1283

    Article  Google Scholar 

  27. Putnis A (1978) The mechanism of exsolution of hematite from iron-bearing rutile. Phys Chem Miner 3(2):183–197

    Article  Google Scholar 

  28. Sabioni ACS, Huntz AM, Daniel AMJM, Macedo WAA (2005) Measurement of iron self-diffusion in hematite single crystals by secondary ion-mass spectrometry (SIMS) and comparison with cation self-diffusion in corundum-structure oxides. Phil Mag 85(31):3643–3658

    Article  Google Scholar 

  29. Reece M, Morrell R (1991) Electron microscope study of non-stoichiometric titania. J Mater Sci 26:5566–5574. doi:10.1007/BF00553660

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Slovenian Research Agency under the Project No. J1-6742 »Atomic-scale studies of initial stages of phase transformations in minerals« and PhD Grant No. 1000-11-310225. The research leading to these results has received funding from the European Union Seventh Framework Programme [FP7] under Grant agreement no. 312483 (ESTEEM2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksander Rečnik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stanković, N., Rečnik, A. & Daneu, N. Topotaxial reactions during oxidation of ilmenite single crystal. J Mater Sci 51, 958–968 (2016). https://doi.org/10.1007/s10853-015-9425-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9425-y

Keywords

Navigation