Skip to main content
Log in

Tuning the photoelectronic and photocatalytic properties of single-crystalline TiO2 nanosheet array films with dominant {001} facets by controlling the hydrochloric acid concentration

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Single-crystalline TiO2 nanosheet array films with tunable percentage of exposed {001} facets were synthesized on FTO by a simple hydrothermal method. The effects of the hydrochloric acid concentration on morphology, crystal structure, and optical property have been investigated by scanning electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction, micro-Raman spectroscope system, and UV–Vis spectrophotometer. When the hydrochloric acid concentration increases from 4.8 to 5.2 mol/L, dense regular nanosheets tend to grow perpendicular to the substrate surface, and the percentage of exposed {001} facets is increasing from 76 to 84 %. Evolution of these nanosheet array films has accompanied by significant variations of photoelectronic and photocatalytic properties. The intensity of Raman peak E g at 144 cm−1 decreases, and the photocurrent increases when more proportion areas of {001} facets are exposed. The sample prepared at hydrochloric acid concentration of 4.8 mol/L shows the highest photocatalytic activity. This can be explained by the preferential carrier transport to different facets of the TiO2 crystal with tradeoff relation between the {101} and {001} facets, and a increasing of total catalytic sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kruth A, Peglow S, Quade A, Pohl M-M, Foest R, Brüser V, Weltmann KD (2014) Structural and photoelectrochemical properties of DC magnetron-sputtered TiO2 Layers on FTO. J Phys Chem C 118:25234–25244

    Article  Google Scholar 

  2. Lee S, Lee K, Kim WD, Lee S, Shin DJ, Lee DC (2014) Thin amorphous TiO2 shell on CdSe nanocrystal quantum dots enhances photocatalysis of hydrogen evolution from water. J Phys Chem C 118:23627–23634

    Article  Google Scholar 

  3. Qian W, Greaney PA, Fowler S, Chiu SK, Goforth AM, Jiao J (2014) Low-temperature nitrogen doping in ammonia solution for production of N-doped TiO2-hybridized graphene as a highly efficient photocatalyst for water treatment. ACS Sustain Chem Eng 2:1802–1810

    Article  Google Scholar 

  4. Yan J, Wu G, Dai W, Guan N, Li L (2014) Synthetic design of gold nanoparticles on anatase TiO2 001 for enhanced visible light harvesting. ACS Sustain Chem Eng 2:1940–1946

    Article  Google Scholar 

  5. Hou Z, Zhang Y, Deng K, Chen Y, Li X, Deng X, Cheng Z, Lian H, Li C, Lin J (2015) UV-emitting upconversion-based TiO2 photosensitizing nanoplatform: near-infrared light mediated in vivo photodynamic therapy via mitochondria-involved apoptosis pathway. ACS Nano 9:2584–2599

    Article  Google Scholar 

  6. Sudhagar P, Devadoss A, Nakata K, Terashima C, Fujishima A (2015) Enhanced photoelectrocatalytic water splitting at hierarchical Gd3+: TiO2 nanostructures through amplifying light reception and surface states passivation. J Electrochem Soc 162:H108–H114

    Article  Google Scholar 

  7. Yang HG, Liu G, Qiao SZ, Sun CH, Jin YG, Smith SC, Zou J, Cheng HM, Lu GQ (2009) Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant 001 facets. J Am Chem Soc 131:4078–4083

    Article  Google Scholar 

  8. Zheng Z, Huang B, Qin X, Zhang X, Dai Y, Jiang M, Wang P, Whangbo MH (2009) Highly efficient photocatalyst: TiO2 microspheres produced from TiO2 nanosheets with a high percentage of reactive {001} facets. Chem Eur J 15:12576–12579

    Article  Google Scholar 

  9. Lazzeri M, Vittadini A, Selloni A (2001) Structure and energetics of stoichiometric TiO2 anatase surfaces. Phys Rev B 63:155409

    Article  Google Scholar 

  10. Sugimoto T, Zhou X, Muramatsu A (2003) Synthesis of uniform anatase TiO2 nanoparticles by gel-sol method 4. Shape control. J Colloid Interface Sci 259:53–61

    Article  Google Scholar 

  11. Sugimoto T, Zhou X, Muramatsu A (2002) Synthesis of uniform anatase TiO2 nanoparticles by gel-sol method. 1. Solution chemistry of Ti(OH)(4-n) + (n) complexes. J Colloid Interface Sci 252:339–346

    Article  Google Scholar 

  12. Sugimoto T, Zhou X (2002) Synthesis of uniform anatase TiO2 nanoparticles by the gel-sol method 2. Adsorption of OH- ions to Ti(OH)4 gel and TiO2 particles. J Colloid Interface Sci 252:347–353

    Article  Google Scholar 

  13. Yang HG, Sun CH, Qiao SZ, Zou J, Liu G, Smith SC, Cheng HM, Lu GQ (2008) Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 453:638–641

    Article  Google Scholar 

  14. Sun T, Wang Y, Al-Mamun M, Zhang H, Liu P, Zhao H (2015) Photoelectrochemical determination of intrinsic kinetics of photoelectrocatalysis processes at 001 faceted anatase TiO2 photoanode. RSC Adv 5:12860–12865

    Article  Google Scholar 

  15. Zhang J, Qian L, Fu W, Xi J, Ji Z (2014) Alkaline-earth metal Ca and N codoped TiO2 with exposed 001 facets for enhancing visible light photocatalytic activity. J Am Ceram Soc 97:2615–2622

    Article  Google Scholar 

  16. Van TK, Nguyen CK, Kang YS (2013) Axis-oriented, continuous anatase titania films with exposed reactive 100 facets. Chem Eur J 19:9376–9380

    Article  Google Scholar 

  17. Laskova B, Zukalova M, Kavan L et al (2012) Voltage enhancement in dye-sensitized solar cell using (001)-oriented anatase TiO2 nanosheets. J Solid State Electrochem 16:2993–3001

    Article  Google Scholar 

  18. Tan W, Yin X, Zhou X, Zhang J, Xiao X, Lin Y (2009) Electrophoretic deposition of nanocrystalline TiO2 films on Ti substrates for use in flexible dye-sensitized solar cells. Electrochim Acta 54:4467–4472

    Article  Google Scholar 

  19. Yu J, Fan J, Lv K (2010) Anatase TiO2 nanosheets with exposed (001) facets: improved photoelectric conversion efficiency in dye-sensitized solar cells. Nanoscale 2:2144–2149

    Article  Google Scholar 

  20. Wang X, Liu G, Wang L, Pan J, Lu GQ, Cheng HM (2011) TiO2 films with oriented anatase 001 facets and their photoelectrochemical behavior as CdS nanoparticle sensitized photoanodes. J Mater Chem 21:869–873

    Article  Google Scholar 

  21. Liu B, Aydil ES (2011) Anatase TiO2 films with reactive 001 facets on transparent conductive substrate. Chem Commun 47:9507–9509

    Article  Google Scholar 

  22. Wang B, Leung MKH, Lu XY, Chen SY (2013) Synthesis and photocatalytic activity of boron and fluorine codoped TiO2 nanosheets with reactive facets. Appl Energy 112:1190–1197

    Article  Google Scholar 

  23. Wang B, Lu XY, Lawrence KY, Xuan J, Leung MK, Guo H (2014) Facile synthesis of TiO2 hollow spheres composed of high percentage of reactive facets for enhanced photocatalytic activity. CrystEngComm 16:10046–10055

    Article  Google Scholar 

  24. Devi LG, Kottam N, Kumar SG (2009) Preparation and characterization of Mn-doped titanates with a bicrystalline framework: correlation of the crystallite size with the synergistic effect on the photocatalytic activity. J Phys Chem C 113:15593–15601

    Article  Google Scholar 

  25. Kwon SJ, Im HB, Nam JE, Kang JK, Hwang TS, Yi KB (2014) Hydrothermal synthesis of rutile–anatase TiO2 nanobranched arrays for efficient dye-sensitized solar cells. Appl Surf Sci 320:487–493

    Article  Google Scholar 

  26. Antony RP, Mathews T, Dash S, Tyagi AK (2013) Kinetics and physicochemical process of photoinduced hydrophobic <-> superhydrophilic switching of pristine and N-doped TiO2 nanotube arrays. J Phys Chem C 117:6851–6860

    Article  Google Scholar 

  27. Xu Y, Zhang M, Zhang M, Lv J, Jiang X, He G, Song X, Sun Z (2014) Controllable hydrothermal synthesis, optical and photocatalytic properties of TiO2 nanostructures. Appl Surf Sci 315:299–306

    Article  Google Scholar 

  28. Zheng Z, Xie W, Lim ZS, You L, Wang J (2014) CdS sensitized 3D hierarchical TiO2/ZnO heterostructure for efficient solar energy conversion. Sci Rep 4:5721

    Google Scholar 

  29. Tian F, Zhang Y, Zhang J, Pan C (2012) Raman spectroscopy: a new approach to measure the percentage of anatase TiO2 exposed (001) facets. J Phys Chem C 116:7515–7519

    Article  Google Scholar 

  30. Roy N, Sohn Y, Pradhan D (2013) Synergy of low-energy 101 and high-energy 001 TiO2 crystal facets for enhanced photocatalysis. ACS Nano 7:2532–2540

    Article  Google Scholar 

  31. Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep 48:53–229

    Article  Google Scholar 

  32. Xu F, Dai M, Lu Y, Sun L (2010) Hierarchical ZnO nanowire–nanosheet architectures for high power conversion efficiency in dye-sensitized solar cells. J Phys Chem C 114:2776–2782

    Article  Google Scholar 

  33. Riegel G, Bolton JR (1995) Photocatalytic efficiency variability in TiO2 particles. J Phys Chem 99:4215–4224

    Article  Google Scholar 

  34. Liu G, Sun C, Yang HG, Smith SC, Wang L, Lu GQM, Cheng HM (2010) Nanosized anatase TiO2 single crystals for enhanced photocatalytic activity. Chem Commun 46:755–757

    Article  Google Scholar 

  35. Pan J, Liu G, Lu GQ, Cheng HM (2011) On the true photoreactivity order of {001}, {010}, and {101} facets of anatase TiO2 crystals. Angew Chem Int Ed 50:2133–2137

    Article  Google Scholar 

  36. Fang X, Bando Y, Liao M, Gautam UK, Zhi C, Dierre B, Liu B, Zhai T, Sekiguchi T, Koide Y, Golberg D (2009) Single-crystalline ZnS nanobelts as ultraviolet-light sensors. Adv Mater 21:2034–2039

    Article  Google Scholar 

  37. Liu G, Hoivik N, Wang X, Lu S, Wang K, Jakobsen H (2013) Photoconductive, free-standing crystallized TiO2 nanotube membranes. Electrochim Acta 93:80–86

    Article  Google Scholar 

  38. Zou J, Zhang Q, Huang K, Marzari N (2010) Ultraviolet photodetectors based on anodic TiO2 nanotube arrays. J Phys Chem C 114:10725–10729

    Article  Google Scholar 

  39. Meng F, Song X, Sun Z (2009) Photocatalytic activity of TiO2 thin films deposited by RF magnetron sputtering. Vacuum 83:1147–1151

    Article  Google Scholar 

  40. Krýsa J, Waldner G, Měšt’ánková H, Jirkovský J, Grabner G (2006) Photocatalytic degradation of model organic pollutants on an immobilized particulate TiO2 layer: roles of adsorption processes and mechanistic complexity. Appl Catal B 64:290–301

    Article  Google Scholar 

  41. Xie Y (2006) Photoelectrochemical application of nanotubular titania photoanode. Electrochim Acta 51:3399–3406

    Article  Google Scholar 

  42. Liu S, Yu J, Jaroniec M (2010) Tunable photocatalytic selectivity of hollow TiO2 microspheres composed of anatase polyhedra with exposed 001 facets. J Am Chem Soc 132:11914–11916

    Article  Google Scholar 

  43. Gordon TR, Cargnello M, Paik T, Mangolini F, Weber RT, Fornasiero P, Murray CB (2012) Nonaqueous synthesis of TiO2 nanocrystals using TiF4 to engineer morphology, oxygen vacancy concentration, and photocatalytic activity. J Am Chem Soc 134:6751–6761

    Article  Google Scholar 

  44. Zhao X, Jin W, Cai J, Ye J, Li Z, Ma Y, Xie J, Qi L (2011) Shape-and size-controlled synthesis of uniform anatase TiO2 nanocuboids enclosed by active {100} and {001} facets. Adv Funct Mater 21:3554–3563

    Article  Google Scholar 

  45. áToby Kelsey E (1997) Atomistic simulation of the surface structure of the TiO2 polymorphs rutileand anatase. J Mater Chem 7:563–568

    Article  Google Scholar 

  46. Murakami N, Kurihara Y, Tsubota T, Ohno T (2009) Shape-controlled anatase titanium (IV) oxide particles prepared by hydrothermal treatment of peroxo titanic acid in the presence of polyvinyl alcohol. J Phys Chem C 113:3062–3069

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 51472003 and 51272001) and the National Key Basic Research Program (2013CB632705), The authors would like to thank Yonglong Zhuang and Zhongqing Lin of the Experimental Technology Center of Anhui University, for the electron microscope test and discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoqi Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Zhang, Q., Wang, W. et al. Tuning the photoelectronic and photocatalytic properties of single-crystalline TiO2 nanosheet array films with dominant {001} facets by controlling the hydrochloric acid concentration. J Mater Sci 51, 950–957 (2016). https://doi.org/10.1007/s10853-015-9424-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9424-z

Keywords

Navigation